Jan 2015, Volume 2 Issue 3
    

Cover illustration

  • Bacteria in the wild have to face and surmount the challenges raised by fluctuations in extracellular environment. It is observed in a wide range of bacterial species that individual cells within an isogenic bacterial population may stochastically switch among multiple different phenotypes in order to survive in rapidly changing environments. This kind of phenotypic heterogeneity with stochastic phenotype switching is generally understood to be an adaptive bet-hedging strateg [Detail] ...


  • Select all
  • RESEARCH ARTICLE
    Chi Zhang, Sha Cao, Ying Xu

    A computational analysis of genome-scale transcriptomic data collected on ~1,700 tissue samples of three cancer types: breast carcinoma, colon adenocarcinoma and lung adenocarcinoma, revealed that each tissue consists of (at least) two major subpopulations of cancer cells with different capabilities to handle fluctuating O2 levels. The two populations have distinct genomic and transcriptomic characteristics, one accelerating its proliferation under hypoxic conditions and the other proliferating faster with higher O2 levels, referred to as the hypoxia and the reoxygenation subpopulations, respectively. The proportions of the two subpopulations within a cancer tissue change as the average O2 level changes. They both contribute to cancer development but in a complementary manner. The hypoxia subpopulation tends to have higher proliferation rates than the reoxygenation one as well as higher apoptosis rates; and it is largely responsible for the acidic environment that enables tissue invasion and provides protection against attacks from T-cells. In comparison, the reoxygenation subpopulation generates new extracellular matrices in support of further growth of the tumor and strengthens cell-cell adhesion to provide scaffolds to keep all the cells connected. This subpopulation also serves as the major source of growth factors for tissue growth. These data and observations strongly suggest that these two major subpopulations within each tumor work together in a conjugative relationship to allow the tumor to overcome stresses associated with the constantly changing O2 level due to repeated growth and angiogenesis. The analysis results not only reveal new insights about the population dynamics within a tumor but also have implications to our understanding of possible causes of different cancer phenotypes such as diffused versus more tightly connected tumor tissues.

  • RESEARCH ARTICLE
    Honglei Liu, Yanda Li, Xiaowo Wang

    Constraint-based flux analysis has been widely used in metabolic engineering to predict genetic optimization strategies. These methods seek to find genetic manipulations that maximally couple the desired metabolites with the cellular growth objective. However, such framework does not work well for overproducing chemicals that are not closely correlated with biomass, for example non-native biochemical production by introducing synthetic pathways into heterologous host cells. Here, we present a computational method called OP-Synthetic, which can identify effective manipulations (upregulation, downregulation and deletion of reactions) and produce a step-by-step optimization strategy for the overproduction of indigenous and non-native chemicals. We compared OP-Synthetic with several state-of-the-art computational approaches on the problems of succinate overproduction and N-acetylneuraminic acid synthetic pathway optimization in Escherichia coli. OP-Synthetic showed its advantage for efficiently handling multiple steps optimization problems on genome wide metabolic networks. And more importantly, the optimization strategies predicted by OP-Synthetic have a better match with existing engineered strains, especially for the engineering of synthetic metabolic pathways for non-native chemical production. OP-Synthetic is freely available at:http://bioinfo.au.tsinghua.edu.cn/member/xwwang/OPSynthetic/.

  • RESEARCH ARTICLE
    Chen Jia, Minping Qian, Yu Kang, Daquan Jiang

    Fluctuating environments pose tremendous challenges to bacterial populations. It is observed in numerous bacterial species that individual cells can stochastically switch among multiple phenotypes for the population to survive in rapidly changing environments. This kind of phenotypic heterogeneity with stochastic phenotype switching is generally understood to be an adaptive bet-hedging strategy. Mathematical models are essential to gain a deeper insight into the principle behind bet-hedging and the pattern behind experimental data. Traditional deterministic models cannot provide a correct description of stochastic phenotype switching and bet-hedging, and traditional Markov chain models at the cellular level fail to explain their underlying molecular mechanisms. In this paper, we propose a nonlinear stochastic model of multistable bacterial systems at the molecular level. It turns out that our model not only provides a clear description of stochastic phenotype switching and bet-hedging within isogenic bacterial populations, but also provides a deeper insight into the analysis of multidimensional experimental data. Moreover, we use some deep mathematical theories to show that our stochastic model and traditional Markov chain models are essentially consistent and reflect the dynamic behavior of the bacterial system at two different time scales. In addition, we provide a quantitative characterization of the critical state of multistable bacterial systems and develop an effective data-driven method to identify the critical state without resorting to specific mathematical models.