Population dynamics inside cancer biomass driven by repeated hypoxia-reoxygenation cycles
Chi Zhang, Sha Cao, Ying Xu
Population dynamics inside cancer biomass driven by repeated hypoxia-reoxygenation cycles
A computational analysis of genome-scale transcriptomic data collected on ~1,700 tissue samples of three cancer types: breast carcinoma, colon adenocarcinoma and lung adenocarcinoma, revealed that each tissue consists of (at least) two major subpopulations of cancer cells with different capabilities to handle fluctuating O2 levels. The two populations have distinct genomic and transcriptomic characteristics, one accelerating its proliferation under hypoxic conditions and the other proliferating faster with higher O2 levels, referred to as the hypoxia and the reoxygenation subpopulations, respectively. The proportions of the two subpopulations within a cancer tissue change as the average O2 level changes. They both contribute to cancer development but in a complementary manner. The hypoxia subpopulation tends to have higher proliferation rates than the reoxygenation one as well as higher apoptosis rates; and it is largely responsible for the acidic environment that enables tissue invasion and provides protection against attacks from T-cells. In comparison, the reoxygenation subpopulation generates new extracellular matrices in support of further growth of the tumor and strengthens cell-cell adhesion to provide scaffolds to keep all the cells connected. This subpopulation also serves as the major source of growth factors for tissue growth. These data and observations strongly suggest that these two major subpopulations within each tumor work together in a conjugative relationship to allow the tumor to overcome stresses associated with the constantly changing O2 level due to repeated growth and angiogenesis. The analysis results not only reveal new insights about the population dynamics within a tumor but also have implications to our understanding of possible causes of different cancer phenotypes such as diffused versus more tightly connected tumor tissues.
cancer population dynamics / intratumor heterogeneity / cancer cell subpopulations / hypoxia / reoxygenation / cancer evolution
[1] |
Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H.,
CrossRef
Pubmed
Google scholar
|
[2] |
Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P.,
CrossRef
Pubmed
Google scholar
|
[3] |
Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D.,
CrossRef
Pubmed
Google scholar
|
[4] |
Axelson, H., Fredlund, E., Ovenberger, M., Landberg, G. and Påhlman, S. (2005) Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell Dev. Biol., 16, 554–563
CrossRef
Pubmed
Google scholar
|
[5] |
Malec, V., Gottschald, O. R., Li, S., Rose, F., Seeger, W. and Hänze, J. (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic. Biol. Med., 48, 1626–1635
CrossRef
Pubmed
Google scholar
|
[6] |
Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D., Esposito, D.,
CrossRef
Pubmed
Google scholar
|
[7] |
The Cancer Genome Atlas Network. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487, 330–337
CrossRef
Pubmed
Google scholar
|
[8] |
The Cancer Genome Atlas Network. (2012) Comprehensive molecular portraits of human breast tumours. Nature, 490, 61–70
CrossRef
Pubmed
Google scholar
|
[9] |
Cui, J., Mao, X., Olman, V., Hastings, P. J. and Xu, Y. (2012) Hypoxia and miscoupling between reduced energy efficiency and signaling to cell proliferation drive cancer to grow increasingly faster. J. Mol. Cell Biol., 4, 174–176
CrossRef
Pubmed
Google scholar
|
[10] |
Huang, W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57
CrossRef
Pubmed
Google scholar
|
[11] |
Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205
CrossRef
Pubmed
Google scholar
|
[12] |
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[13] |
Matsumoto, S., Yasui, H., Mitchell, J. B. and Krishna, M. C. (2010) Imaging cycling tumor hypoxia. Cancer Res., 70, 10019–10023
CrossRef
Pubmed
Google scholar
|
[14] |
Dewhirst, M. W. (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat. Res., 172, 653–665
CrossRef
Pubmed
Google scholar
|
[15] |
Polotsky, V. Y., Savransky, V., Bevans-Fonti, S., Reinke, C., Li, J., Grigoryev, D. N. and Shimoda, L. A. (2010) Intermittent and sustained hypoxia induce a similar gene expression profile in human aortic endothelial cells. Physiol. Genomics, 41, 306–314
CrossRef
Pubmed
Google scholar
|
[16] |
Dewhirst, M. W. (2007) Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res., 67, 854–855
CrossRef
Pubmed
Google scholar
|
[17] |
Toffoli, S. and Michiels, C. (2008) Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J., 275, 2991–3002
CrossRef
Pubmed
Google scholar
|
[18] |
Weis, S. M. and Cheresh, D. A. (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 17, 1359–1370
CrossRef
Pubmed
Google scholar
|
[19] |
Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases. Nature, 407, 249–257
CrossRef
Pubmed
Google scholar
|
[20] |
Li, G., Ma, Q., Tang, H., Paterson, A. H. and Xu, Y. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res., 37, e101
CrossRef
Pubmed
Google scholar
|
[21] |
Gao, Y. and Church, G. (2005) Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970–3975
CrossRef
Pubmed
Google scholar
|
[22] |
Brunet, J. P., Tamayo, P., Golub, T. R. and Mesirov, J. P. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA, 101, 4164–4169
CrossRef
Pubmed
Google scholar
|
[23] |
Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791
CrossRef
Pubmed
Google scholar
|
[24] |
Kong, X. Z., Zheng, C. H., and Wu, Y, Q (2007) Molecular cancer class discovery using non-negative matrix factorization with sparseness constraint. Advanced Intelligent Computing Theories and Applications: With Aspects of Theoretical and Methodological Issues, 4681. Berlin :Springer-Verlag 792–802
|
[25] |
Evangelou, M., Rendon, A., Ouwehand, W. H., Wernisch, L. and Dudbridge, F. (2012) Comparison of methods for competitive tests of pathway analysis. PLoS ONE, 7, e41018
CrossRef
Pubmed
Google scholar
|
[26] |
Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA, 98, 5116–5121
CrossRef
Pubmed
Google scholar
|
[27] |
Liao, D. and Johnson, R. S. (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev., 26, 281–290
CrossRef
Pubmed
Google scholar
|
[28] |
Dewhirst, M. W., Cao, Y. and Moeller, B. (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer, 8, 425–437
CrossRef
Pubmed
Google scholar
|
[29] |
Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674
CrossRef
Pubmed
Google scholar
|
[30] |
Luoto, K. R., Kumareswaran, R. and Bristow, R. G. (2013) Tumor hypoxia as a driving force in genetic instability. Genome Integr., 4, 5
CrossRef
Pubmed
Google scholar
|
[31] |
Gatenby, R. A., Smallbone, K., Maini, P. K., Rose, F., Averill, J., Nagle, R. B., Worrall, L. and Gillies, R. J. (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer, 97, 646–653
CrossRef
Pubmed
Google scholar
|
[32] |
Bondar, T. and Medzhitov, R. (2010) p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell, 6, 309–322
CrossRef
Pubmed
Google scholar
|
[33] |
Vaupel, P. and Mayer, A. (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev., 26, 225–239
CrossRef
Pubmed
Google scholar
|
[34] |
Vaupel, P. (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist, 13, 21–26
CrossRef
Pubmed
Google scholar
|
[35] |
Lai, L. C. (2002) Role of steroid hormones and growth factors in breast cancer. Clin. Chem. Lab. Med., 40, 969–974
CrossRef
Pubmed
Google scholar
|
[36] |
Evangelou, A. I., Winter, S. F., Huss, W. J., Bok, R. A. and Greenberg, N. M. (2004) Steroid hormones, polypeptide growth factors, hormone refractory prostate cancer, and the neuroendocrine phenotype. J. Cell. Biochem., 91, 671–683
CrossRef
Pubmed
Google scholar
|
[37] |
Quatromoni, J. G. and Eruslanov, E. (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res., 4, 376–389
Pubmed
|
[38] |
Hirschhaeuser, F., Sattler, U. G. and Mueller-Klieser, W. (2011) Lactate: a metabolic key player in cancer. Cancer Res., 71, 6921–6925
CrossRef
Pubmed
Google scholar
|
[39] |
Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S.,
CrossRef
Pubmed
Google scholar
|
[40] |
Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313
CrossRef
Pubmed
Google scholar
|
[41] |
Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodríguez-Rojas, A., Blázquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J.,
CrossRef
Pubmed
Google scholar
|
[42] |
Tompkins, J. D., Nelson, J. L., Hazel, J. C., Leugers, S. L., Stumpf, J. D. and Foster, P. L. (2003) Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J. Bacteriol., 185, 3469–3472
CrossRef
Pubmed
Google scholar
|
[43] |
Millar, T. M., Phan, V. and Tibbles, L. A. (2007) ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic. Biol. Med., 42, 1165–1177
CrossRef
Pubmed
Google scholar
|
[44] |
Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R. and Brand, M. D. (2010) Mitochondrial proton and electron leaks. Essays Biochem., 47, 53–67
CrossRef
Pubmed
Google scholar
|
[45] |
Zulueta, J. J., Yu, F. S., Hertig, I. A., Thannickal, V. J. and Hassoun, P. M. (1995) Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am. J. Respir. Cell Mol. Biol., 12, 41–49
CrossRef
Pubmed
Google scholar
|
[46] |
Tas, F., Hansel, H., Belce, A., Ilvan, S., Argon, A., Camlica, H. and Topuz, E. (2005) Oxidative stress in breast cancer. Med. Oncol., 22, 11–15
CrossRef
Pubmed
Google scholar
|
[47] |
Kim, B. M., Choi, J. Y., Kim, Y. J., Woo, H. D. and Chung, H. W. (2007) Reoxygenation following hypoxia activates DNA-damage checkpoint signaling pathways that suppress cell-cycle progression in cultured human lymphocytes. FEBS Lett., 581, 3005–3012
CrossRef
Pubmed
Google scholar
|
[48] |
Sullivan, R., Paré, G. C., Frederiksen, L. J., Semenza, G. L. and Graham, C. H. (2008) Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol. Cancer Ther., 7, 1961–1973
CrossRef
Pubmed
Google scholar
|
[49] |
Louie, E., Nik, S., Chen, J. S., Schmidt, M., Song, B., Pacson, C., Chen, X. F., Park, S., Ju, J. and Chen, E. I. (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res., 12, R94
CrossRef
Pubmed
Google scholar
|
[50] |
Kim, Y., Lin, Q., Glazer, P. M. and Yun, Z. (2009) Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med., 9, 425–434
CrossRef
Pubmed
Google scholar
|
[51] |
Teppo, S., Sundquist, E., Vered, M., Holappa, H., Parkkisenniemi, J., Rinaldi, T., Lehenkari, P., Grenman, R., Dayan, D., Risteli, J.,
CrossRef
Pubmed
Google scholar
|
[52] |
Weljie, A. M. and Jirik, F. R. (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int. J. Biochem. Cell Biol., 43, 981–989
CrossRef
Pubmed
Google scholar
|
[53] |
Sergeant, G., van Eijsden, R., Roskams, T., Van Duppen, V. and Topal, B. (2012) Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery. BMC Cancer, 12, 527
CrossRef
Pubmed
Google scholar
|
[54] |
Ramsköld, D., Luo, S., Wang, Y. C., Li, R., Deng, Q., Faridani, O. R., Daniels, G. A., Khrebtukova, I., Loring, J. F., Laurent, L. C.,
CrossRef
Pubmed
Google scholar
|
[55] |
Denko, N. C. (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 8, 705–713
CrossRef
Pubmed
Google scholar
|
[56] |
Gillies, R. J., Verduzco, D. and Gatenby, R. A. (2012) Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer, 12, 487–493
CrossRef
Pubmed
Google scholar
|
[57] |
Scott, B., Sun, C. L., Mao, X., Yu, C., Vohra, B. P., Milbrandt, J. and Crowder, C. M. (2013) Role of oxygen consumption in hypoxia protection by translation factor depletion. J. Exp. Biol., 216, 2283–2292
CrossRef
Pubmed
Google scholar
|
[58] |
Wheaton, W. W. and Chandel, N. S. (2011) Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. Cell Physiol., 300, C385–C393
CrossRef
Pubmed
Google scholar
|
[59] |
Yuan, G., Nanduri, J., Khan, S., Semenza, G. L. and Prabhakar, N. R. (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J. Cell. Physiol., 217, 674–685
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |