Population dynamics inside cancer biomass driven by repeated hypoxia-reoxygenation cycles

Chi Zhang , Sha Cao , Ying Xu

Quant. Biol. ›› 2014, Vol. 2 ›› Issue (3) : 85 -99.

PDF (1733KB)
Quant. Biol. ›› 2014, Vol. 2 ›› Issue (3) : 85 -99. DOI: 10.1007/s40484-014-0032-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Population dynamics inside cancer biomass driven by repeated hypoxia-reoxygenation cycles

Author information +
History +
PDF (1733KB)

Abstract

A computational analysis of genome-scale transcriptomic data collected on ~1,700 tissue samples of three cancer types: breast carcinoma, colon adenocarcinoma and lung adenocarcinoma, revealed that each tissue consists of (at least) two major subpopulations of cancer cells with different capabilities to handle fluctuating O2 levels. The two populations have distinct genomic and transcriptomic characteristics, one accelerating its proliferation under hypoxic conditions and the other proliferating faster with higher O2 levels, referred to as the hypoxia and the reoxygenation subpopulations, respectively. The proportions of the two subpopulations within a cancer tissue change as the average O2 level changes. They both contribute to cancer development but in a complementary manner. The hypoxia subpopulation tends to have higher proliferation rates than the reoxygenation one as well as higher apoptosis rates; and it is largely responsible for the acidic environment that enables tissue invasion and provides protection against attacks from T-cells. In comparison, the reoxygenation subpopulation generates new extracellular matrices in support of further growth of the tumor and strengthens cell-cell adhesion to provide scaffolds to keep all the cells connected. This subpopulation also serves as the major source of growth factors for tissue growth. These data and observations strongly suggest that these two major subpopulations within each tumor work together in a conjugative relationship to allow the tumor to overcome stresses associated with the constantly changing O2 level due to repeated growth and angiogenesis. The analysis results not only reveal new insights about the population dynamics within a tumor but also have implications to our understanding of possible causes of different cancer phenotypes such as diffused versus more tightly connected tumor tissues.

Graphical abstract

Keywords

cancer population dynamics / intratumor heterogeneity / cancer cell subpopulations / hypoxia / reoxygenation / cancer evolution

Cite this article

Download citation ▾
Chi Zhang, Sha Cao, Ying Xu. Population dynamics inside cancer biomass driven by repeated hypoxia-reoxygenation cycles. Quant. Biol., 2014, 2(3): 85-99 DOI:10.1007/s40484-014-0032-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu, X., Hou, Y., Yin, X., Bao, L., Tang, A., Song, L., Li, F., Tsang, S., Wu, K., Wu, H., (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886–895

[2]

Gerlinger, M., Rowan, A. J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med., 366, 883–892

[3]

Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li, F., Wu, K., Liang, J., Shao, D., (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873–885

[4]

Axelson, H., Fredlund, E., Ovenberger, M., Landberg, G. and Påhlman, S. (2005) Hypoxia-induced dedifferentiation of tumor cells—a mechanism behind heterogeneity and aggressiveness of solid tumors. Semin. Cell Dev. Biol., 16, 554–563

[5]

Malec, V., Gottschald, O. R., Li, S., Rose, F., Seeger, W. and Hänze, J. (2010) HIF-1 alpha signaling is augmented during intermittent hypoxia by induction of the Nrf2 pathway in NOX1-expressing adenocarcinoma A549 cells. Free Radic. Biol. Med., 48, 1626–1635

[6]

Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., Cook, K., Stepansky, A., Levy, D., Esposito, D., (2011) Tumour evolution inferred by single-cell sequencing. Nature, 472, 90–94

[7]

The Cancer Genome Atlas Network. (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature, 487, 330–337

[8]

The Cancer Genome Atlas Network. (2012) Comprehensive molecular portraits of human breast tumours. Nature, 490, 61–70

[9]

Cui, J., Mao, X., Olman, V., Hastings, P. J. and Xu, Y. (2012) Hypoxia and miscoupling between reduced energy efficiency and signaling to cell proliferation drive cancer to grow increasingly faster. J. Mol. Cell Biol., 4, 174–176

[10]

Huang, W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44–57

[11]

Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res., 42, D199–D205

[12]

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550

[13]

Matsumoto, S., Yasui, H., Mitchell, J. B. and Krishna, M. C. (2010) Imaging cycling tumor hypoxia. Cancer Res., 70, 10019–10023

[14]

Dewhirst, M. W. (2009) Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress. Radiat. Res., 172, 653–665

[15]

Polotsky, V. Y., Savransky, V., Bevans-Fonti, S., Reinke, C., Li, J., Grigoryev, D. N. and Shimoda, L. A. (2010) Intermittent and sustained hypoxia induce a similar gene expression profile in human aortic endothelial cells. Physiol. Genomics, 41, 306–314

[16]

Dewhirst, M. W. (2007) Intermittent hypoxia furthers the rationale for hypoxia-inducible factor-1 targeting. Cancer Res., 67, 854–855

[17]

Toffoli, S. and Michiels, C. (2008) Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J., 275, 2991–3002

[18]

Weis, S. M. and Cheresh, D. A. (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat. Med., 17, 1359–1370

[19]

Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases. Nature, 407, 249–257

[20]

Li, G., Ma, Q., Tang, H., Paterson, A. H. and Xu, Y. (2009) QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res., 37, e101

[21]

Gao, Y. and Church, G. (2005) Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics, 21, 3970–3975

[22]

Brunet, J. P., Tamayo, P., Golub, T. R. and Mesirov, J. P. (2004) Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA, 101, 4164–4169

[23]

Lee, D. D. and Seung, H. S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788–791

[24]

Kong, X. Z., Zheng, C. H., and Wu, Y, Q (2007) Molecular cancer class discovery using non-negative matrix factorization with sparseness constraint. Advanced Intelligent Computing Theories and Applications: With Aspects of Theoretical and Methodological Issues, 4681. Berlin :Springer-Verlag 792–802

[25]

Evangelou, M., Rendon, A., Ouwehand, W. H., Wernisch, L. and Dudbridge, F. (2012) Comparison of methods for competitive tests of pathway analysis. PLoS ONE, 7, e41018

[26]

Tusher, V. G., Tibshirani, R. and Chu, G. (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA, 98, 5116–5121

[27]

Liao, D. and Johnson, R. S. (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev., 26, 281–290

[28]

Dewhirst, M. W., Cao, Y. and Moeller, B. (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat. Rev. Cancer, 8, 425–437

[29]

Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646–674

[30]

Luoto, K. R., Kumareswaran, R. and Bristow, R. G. (2013) Tumor hypoxia as a driving force in genetic instability. Genome Integr., 4, 5

[31]

Gatenby, R. A., Smallbone, K., Maini, P. K., Rose, F., Averill, J., Nagle, R. B., Worrall, L. and Gillies, R. J. (2007) Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. Br. J. Cancer, 97, 646–653

[32]

Bondar, T. and Medzhitov, R. (2010) p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell, 6, 309–322

[33]

Vaupel, P. and Mayer, A. (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev., 26, 225–239

[34]

Vaupel, P. (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist, 13, 21–26

[35]

Lai, L. C. (2002) Role of steroid hormones and growth factors in breast cancer. Clin. Chem. Lab. Med., 40, 969–974

[36]

Evangelou, A. I., Winter, S. F., Huss, W. J., Bok, R. A. and Greenberg, N. M. (2004) Steroid hormones, polypeptide growth factors, hormone refractory prostate cancer, and the neuroendocrine phenotype. J. Cell. Biochem., 91, 671–683

[37]

Quatromoni, J. G. and Eruslanov, E. (2012) Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am. J. Transl. Res., 4, 376–389

[38]

Hirschhaeuser, F., Sattler, U. G. and Mueller-Klieser, W. (2011) Lactate: a metabolic key player in cancer. Cancer Res., 71, 6921–6925

[39]

Fischer, K., Hoffmann, P., Voelkl, S., Meidenbauer, N., Ammer, J., Edinger, M., Gottfried, E., Schwarz, S., Rothe, G., Hoves, S., (2007) Inhibitory effect of tumor cell-derived lactic acid on human T cells. Blood, 109, 3812–3819

[40]

Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313

[41]

Gutierrez, A., Laureti, L., Crussard, S., Abida, H., Rodríguez-Rojas, A., Blázquez, J., Baharoglu, Z., Mazel, D., Darfeuille, F., Vogel, J., (2013) β-Lactam antibiotics promote bacterial mutagenesis via an RpoS-mediated reduction in replication fidelity. Nat. Commun., 4, 1610

[42]

Tompkins, J. D., Nelson, J. L., Hazel, J. C., Leugers, S. L., Stumpf, J. D. and Foster, P. L. (2003) Error-prone polymerase, DNA polymerase IV, is responsible for transient hypermutation during adaptive mutation in Escherichia coli. J. Bacteriol., 185, 3469–3472

[43]

Millar, T. M., Phan, V. and Tibbles, L. A. (2007) ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic. Biol. Med., 42, 1165–1177

[44]

Jastroch, M., Divakaruni, A. S., Mookerjee, S., Treberg, J. R. and Brand, M. D. (2010) Mitochondrial proton and electron leaks. Essays Biochem., 47, 53–67

[45]

Zulueta, J. J., Yu, F. S., Hertig, I. A., Thannickal, V. J. and Hassoun, P. M. (1995) Release of hydrogen peroxide in response to hypoxia-reoxygenation: role of an NAD(P)H oxidase-like enzyme in endothelial cell plasma membrane. Am. J. Respir. Cell Mol. Biol., 12, 41–49

[46]

Tas, F., Hansel, H., Belce, A., Ilvan, S., Argon, A., Camlica, H. and Topuz, E. (2005) Oxidative stress in breast cancer. Med. Oncol., 22, 11–15

[47]

Kim, B. M., Choi, J. Y., Kim, Y. J., Woo, H. D. and Chung, H. W. (2007) Reoxygenation following hypoxia activates DNA-damage checkpoint signaling pathways that suppress cell-cycle progression in cultured human lymphocytes. FEBS Lett., 581, 3005–3012

[48]

Sullivan, R., Paré, G. C., Frederiksen, L. J., Semenza, G. L. and Graham, C. H. (2008) Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol. Cancer Ther., 7, 1961–1973

[49]

Louie, E., Nik, S., Chen, J. S., Schmidt, M., Song, B., Pacson, C., Chen, X. F., Park, S., Ju, J. and Chen, E. I. (2010) Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation. Breast Cancer Res., 12, R94

[50]

Kim, Y., Lin, Q., Glazer, P. M. and Yun, Z. (2009) Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med., 9, 425–434

[51]

Teppo, S., Sundquist, E., Vered, M., Holappa, H., Parkkisenniemi, J., Rinaldi, T., Lehenkari, P., Grenman, R., Dayan, D., Risteli, J., (2013) The hypoxic tumor microenvironment regulates invasion of aggressive oral carcinoma cells. Exp. Cell Res., 319, 376–389

[52]

Weljie, A. M. and Jirik, F. R. (2011) Hypoxia-induced metabolic shifts in cancer cells: moving beyond the Warburg effect. Int. J. Biochem. Cell Biol., 43, 981–989

[53]

Sergeant, G., van Eijsden, R., Roskams, T., Van Duppen, V. and Topal, B. (2012) Pancreatic cancer circulating tumour cells express a cell motility gene signature that predicts survival after surgery. BMC Cancer, 12, 527

[54]

Ramsköld, D., Luo, S., Wang, Y. C., Li, R., Deng, Q., Faridani, O. R., Daniels, G. A., Khrebtukova, I., Loring, J. F., Laurent, L. C., (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol., 30, 777–782

[55]

Denko, N. C. (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 8, 705–713

[56]

Gillies, R. J., Verduzco, D. and Gatenby, R. A. (2012) Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer, 12, 487–493

[57]

Scott, B., Sun, C. L., Mao, X., Yu, C., Vohra, B. P., Milbrandt, J. and Crowder, C. M. (2013) Role of oxygen consumption in hypoxia protection by translation factor depletion. J. Exp. Biol., 216, 2283–2292

[58]

Wheaton, W. W. and Chandel, N. S. (2011) Hypoxia. 2. Hypoxia regulates cellular metabolism. Am. J. Physiol. Cell Physiol., 300, C385–C393

[59]

Yuan, G., Nanduri, J., Khan, S., Semenza, G. L. and Prabhakar, N. R. (2008) Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J. Cell. Physiol., 217, 674–685

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1733KB)

Supplementary files

Supplementary Material 1

Supplementary Material 2

2765

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/