Mar 2015, Volume 2 Issue 4
    

Cover illustration

  • Mining relationships between microbes and the environment they live in is crucial to understand the intrinsic mechanisms that govern cycles of carbon, nitrogen and energy in a microbial community. Building upon next-generation sequencing technology, the selective capture of 16S rRNA genes has enabled the study of co-occurrence patterns of microbial species from the viewpoint of complex networks, yielding successful descriptions of phenomena exhibited in a microbial community. [Detail] ...


  • Select all
  • RESEARCH ARTICLE
    Congmin Zhu, Rui Jiang, Ting Chen

    Mining relationships between microbes and the environment they live in are crucial to understand the intrinsic mechanisms that govern cycles of carbon, nitrogen and energy in a microbial community. Building upon next-generation sequencing technology, the selective capture of 16S rRNA genes has enabled the study of co-occurrence patterns of microbial species from the viewpoint of complex networks, yielding successful descriptions of phenomena exhibited in a microbial community. However, since the effects of such environmental factors as temperature or soil conditions on microbes are complex, reliance on the analysis of co-occurrence networks alone cannot elucidate such complicated effects underlying microbial communities. In this study, we apply a statistical method, which is called Boolean implications for metagenomic studies (BIMS) for extracting Boolean implications (IF-THEN relationships) to capture the effects of environmental factors on microbial species based on 16S rRNA sequencing data. We first demonstrate the power and effectiveness of BIMS through comprehensive simulation studies and then apply it to a 16S rRNA sequencing dataset of real marine microbes. Based on a total of 6,514 pairwise relationships identified at a low false discovery rate (FDR) of 0.01, we construct a Boolean implication network between operational taxonomic units (OTUs) and environmental factors. Relationships in this network are supported by literature, and, most importantly, they bring biological insights into the effects of environmental factors on microbes. We next apply BIMS to detect three-way relationships and show the possibility of using this strategy to explain more complex relationships within a microbial community.

  • RESEARCH ARTICLE
    Derek Eidum, Kanishk Asthana, Samir Unni, Michael Deng, Lingchong You

    Mathematical modeling has become an increasingly important aspect of biological research. Computer simulations help to improve our understanding of complex systems by testing the validity of proposed mechanisms and generating experimentally testable hypotheses. However, significant overhead is generated by the creation, debugging, and perturbation of these computational models and their parameters, especially for researchers who are unfamiliar with programming or numerical methods. Dynetica 2.0 is a user-friendly dynamic network simulator designed to expedite this process. Models are created and visualized in an easy-to-use graphical interface, which displays all of the species and reactions involved in a graph layout. System inputs and outputs, indicators, and intermediate expressions may be incorporated into the model via the versatile “expression variable” entity. Models can also be modular, allowing for the quick construction of complex systems from simpler components. Dynetica 2.0 supports a number of deterministic and stochastic algorithms for performing time-course simulations. Additionally, Dynetica 2.0 provides built-in tools for performing sensitivity or dose response analysis for a number of different metrics. Its parameter searching tools can optimize specific objectives of the time course or dose response of the system. Systems can be translated from Dynetica 2.0 into MATLAB code or the Systems Biology Markup Language (SBML) format for further analysis or publication. Finally, since it is written in Java, Dynetica 2.0 is platform independent, allowing for easy sharing and collaboration between researchers.

  • MEETING REPORT
    Zhen Xie