OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites

Honglei Liu , Yanda Li , Xiaowo Wang

Quant. Biol. ›› 2014, Vol. 2 ›› Issue (3) : 100 -109.

PDF (549KB)
Quant. Biol. ›› 2014, Vol. 2 ›› Issue (3) : 100 -109. DOI: 10.1007/s40484-014-0033-7
RESEARCH ARTICLE
RESEARCH ARTICLE

OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites

Author information +
History +
PDF (549KB)

Abstract

Constraint-based flux analysis has been widely used in metabolic engineering to predict genetic optimization strategies. These methods seek to find genetic manipulations that maximally couple the desired metabolites with the cellular growth objective. However, such framework does not work well for overproducing chemicals that are not closely correlated with biomass, for example non-native biochemical production by introducing synthetic pathways into heterologous host cells. Here, we present a computational method called OP-Synthetic, which can identify effective manipulations (upregulation, downregulation and deletion of reactions) and produce a step-by-step optimization strategy for the overproduction of indigenous and non-native chemicals. We compared OP-Synthetic with several state-of-the-art computational approaches on the problems of succinate overproduction and N-acetylneuraminic acid synthetic pathway optimization in Escherichia coli. OP-Synthetic showed its advantage for efficiently handling multiple steps optimization problems on genome wide metabolic networks. And more importantly, the optimization strategies predicted by OP-Synthetic have a better match with existing engineered strains, especially for the engineering of synthetic metabolic pathways for non-native chemical production. OP-Synthetic is freely available at:http://bioinfo.au.tsinghua.edu.cn/member/xwwang/OPSynthetic/.

Graphical abstract

Keywords

metabolic network / flux analysis / optimization

Cite this article

Download citation ▾
Honglei Liu, Yanda Li, Xiaowo Wang. OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites. Quant. Biol., 2014, 2(3): 100-109 DOI:10.1007/s40484-014-0033-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee, J. W., Na, D., Park, J. M., Lee, J., Choi, S. and Lee, S. Y. (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol., 8, 536–546

[2]

Prather, K. L. J. and Martin, C. H. (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr. Opin.Biotechnol.,19, 468–474

[3]

Alper, H., Miyaoku, K. and Stephanopoulos, G. (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol., 23, 612–616

[4]

Park, J. H., Lee, K. H., Kim, T. Y. and Lee, S. Y. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA, 104, 7797–7802

[5]

Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J., (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 440, 940–943

[6]

Kang, J., Gu, P., Wang, Y., Li, Y., Yang, F., Wang, Q. and Qi, Q. (2012) Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli. Metab. Eng., 14, 623–629

[7]

Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S. B. and Keasling, J. D. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463, 559–562

[8]

Lee, J. W., Kim, T. Y., Jang, Y.-S., Choi, S. and Lee, S. Y. (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol., 29, 370–378

[9]

Park, J. M., Kim, T. Y. and Lee, S. Y. (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol. Adv., 27, 979–988

[10]

Cox, S. J., Shalel Levanon, S., Sanchez, A., Lin, H., Peercy, B., Bennett, G. N. and San, K.-Y. (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab. Eng., 8, 46–57

[11]

Lin, H., Bennett, G. N. and San, K.-Y. (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng., 7, 116–127

[12]

Lee, K. H., Park, J. H., Kim, T. Y., Kim, H. U. and Lee, S. Y. (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol., 3, 149

[13]

Alper, H., Jin, Y.-S., Moxley, J. F. and Stephanopoulos, G. (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng., 7, 155–164

[14]

Bro, C., Regenberg, B., Förster, J. and Nielsen, J. (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng., 8, 102–111

[15]

Kauffman, K. J., Prakash, P. and Edwards, J. S. (2003) Advances in flux balance analysis. Curr. Opin.Biotechnol.,14, 491–496

[16]

Orth, J. D., Thiele, I. and Palsson, B. Ø. (2010) What is flux balance analysis? Nat. Biotechnol., 28, 245–248

[17]

Mahadevan, R. and Schilling, C. H. (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng., 5, 264–276

[18]

Segrè D., Vitkup, D. and Church, G. M. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA, 99, 15112–15117

[19]

Price, N. D., Reed, J. L. and Palsson, B. O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol., 2, 886–897

[20]

Kim, J. and Reed, J. L. (2010) OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol., 4, 53

[21]

Yang, L., Cluett, W. R. and Mahadevan, R. (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab. Eng., 13, 272–281

[22]

Burgard, A. P., Pharkya, P. and Maranas, C. D. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84, 647–657

[23]

Pharkya, P. and Maranas, C. D. (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng., 8, 1–13

[24]

Pharkya, P., Burgard, A. P. and Maranas, C. D. (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res., 14, 2367–2376

[25]

Rockwell, G., Guido, N. J., and Church, G. M. (2013) Redirector: designing cell factories by reconstructing the metabolic objective. PLoS Comput. Biol., 9, e1002882

[26]

Choi, H. S., Lee, S. Y., Kim, T. Y. and Woo, H. M. (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol., 76, 3097–3105

[27]

Park, J. M., Park, H. M., Kim, W. J., Kim, H. U., Kim, T. Y. and Lee, S. Y. (2012) Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol., 6, 106

[28]

Ranganathan, S., Suthers, P. F. and Maranas, C. D. (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6, e1000744

[29]

Cotten, C. and Reed, J. L. (2013) Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J., 8, 595–604

[30]

Lun, D. S., Rockwell, G., Guido, N. J., Baym, M., Kelner, J. A., Berger, B., Galagan, J. E. and Church, G. M. (2009) Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol., 5, 296

[31]

Egen, D. and Lun, D. S. (2012) Truncated branch and bound achieves efficient constraint-based genetic design. Bioinformatics, 28, 1619–1623

[32]

Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt, L. J., Hatzimanikatis, V. and Palsson, B. Ø. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 3, 121

[33]

Jantama, K., Haupt, M. J., Svoronos, S. A., Zhang, X., Moore, J. C., Shanmugam, K. T. and Ingram, L. O. (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol.Bioeng., 99, 1140–1153

[34]

Sánchez, A. M., Bennett, G. N. and San, K.-Y. (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab. Eng., 8, 209–226

[35]

Jensen, P. A. and Papin, J. A. (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics, 27, 541–547

[36]

Ibarra, R. U., Edwards, J. S. and Palsson, B. O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 420, 186–189

[37]

Sánchez, A. M., Bennett, G. N. and San, K. Y. (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog., 21, 358–365

[38]

Sánchez, A. M., Bennett, G. N. and San, K.-Y. (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng., 7, 229–239

[39]

Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S., (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc., 6, 1290–1307

[40]

Schauer, R. (2000) Achievements and challenges of sialic acid research. Glycoconj. J., 17, 485–499

[41]

Wang, B. (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr., 29, 177–222

[42]

Ishikawa, M. and Koizumi, S. (2010) Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr. Res., 345, 2605–2609

[43]

Tao, F., Zhang, Y., Ma, C. and Xu, P. (2011) One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst. Sci. Rep., 1, 142

[44]

Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest, C. R. and Church, G. M. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460, 894–898

[45]

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya, A. D., Adkins, J. N., Schramm, G., Purvine, S. O., Lopez-Ferrer, D., (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol., 6, 390

[46]

Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (549KB)

Supplementary files

Supplementary Material

1761

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/