OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites
Honglei Liu, Yanda Li, Xiaowo Wang
OP-Synthetic: identification of optimal genetic manipulations for the overproduction of native and non-native metabolites
Constraint-based flux analysis has been widely used in metabolic engineering to predict genetic optimization strategies. These methods seek to find genetic manipulations that maximally couple the desired metabolites with the cellular growth objective. However, such framework does not work well for overproducing chemicals that are not closely correlated with biomass, for example non-native biochemical production by introducing synthetic pathways into heterologous host cells. Here, we present a computational method called OP-Synthetic, which can identify effective manipulations (upregulation, downregulation and deletion of reactions) and produce a step-by-step optimization strategy for the overproduction of indigenous and non-native chemicals. We compared OP-Synthetic with several state-of-the-art computational approaches on the problems of succinate overproduction and N-acetylneuraminic acid synthetic pathway optimization in Escherichia coli. OP-Synthetic showed its advantage for efficiently handling multiple steps optimization problems on genome wide metabolic networks. And more importantly, the optimization strategies predicted by OP-Synthetic have a better match with existing engineered strains, especially for the engineering of synthetic metabolic pathways for non-native chemical production. OP-Synthetic is freely available at:http://bioinfo.au.tsinghua.edu.cn/member/xwwang/OPSynthetic/.
metabolic network / flux analysis / optimization
[1] |
Lee, J. W., Na, D., Park, J. M., Lee, J., Choi, S. and Lee, S. Y. (2012) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol., 8, 536–546
CrossRef
Pubmed
Google scholar
|
[2] |
Prather, K. L. J. and Martin, C. H. (2008) De novo biosynthetic pathways: rational design of microbial chemical factories. Curr. Opin.Biotechnol.,19, 468–474
CrossRef
Pubmed
Google scholar
|
[3] |
Alper, H., Miyaoku, K. and Stephanopoulos, G. (2005) Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat. Biotechnol., 23, 612–616
CrossRef
Pubmed
Google scholar
|
[4] |
Park, J. H., Lee, K. H., Kim, T. Y. and Lee, S. Y. (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA, 104, 7797–7802
CrossRef
Pubmed
Google scholar
|
[5] |
Ro, D.-K., Paradise, E. M., Ouellet, M., Fisher, K. J., Newman, K. L., Ndungu, J. M., Ho, K. A., Eachus, R. A., Ham, T. S., Kirby, J.,
CrossRef
Pubmed
Google scholar
|
[6] |
Kang, J., Gu, P., Wang, Y., Li, Y., Yang, F., Wang, Q. and Qi, Q. (2012) Engineering of an N-acetylneuraminic acid synthetic pathway in Escherichia coli. Metab. Eng., 14, 623–629
CrossRef
Pubmed
Google scholar
|
[7] |
Steen, E. J., Kang, Y., Bokinsky, G., Hu, Z., Schirmer, A., McClure, A., Del Cardayre, S. B. and Keasling, J. D. (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature, 463, 559–562
CrossRef
Pubmed
Google scholar
|
[8] |
Lee, J. W., Kim, T. Y., Jang, Y.-S., Choi, S. and Lee, S. Y. (2011) Systems metabolic engineering for chemicals and materials. Trends Biotechnol., 29, 370–378
CrossRef
Pubmed
Google scholar
|
[9] |
Park, J. M., Kim, T. Y. and Lee, S. Y. (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol. Adv., 27, 979–988
CrossRef
Pubmed
Google scholar
|
[10] |
Cox, S. J., Shalel Levanon, S., Sanchez, A., Lin, H., Peercy, B., Bennett, G. N. and San, K.-Y. (2006) Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. Metab. Eng., 8, 46–57
CrossRef
Pubmed
Google scholar
|
[11] |
Lin, H., Bennett, G. N. and San, K.-Y. (2005) Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng., 7, 116–127
CrossRef
Pubmed
Google scholar
|
[12] |
Lee, K. H., Park, J. H., Kim, T. Y., Kim, H. U. and Lee, S. Y. (2007) Systems metabolic engineering of Escherichia coli for L-threonine production. Mol. Syst. Biol., 3, 149
CrossRef
Pubmed
Google scholar
|
[13] |
Alper, H., Jin, Y.-S., Moxley, J. F. and Stephanopoulos, G. (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab. Eng., 7, 155–164
CrossRef
Pubmed
Google scholar
|
[14] |
Bro, C., Regenberg, B., Förster, J. and Nielsen, J. (2006) In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production. Metab. Eng., 8, 102–111
CrossRef
Pubmed
Google scholar
|
[15] |
Kauffman, K. J., Prakash, P. and Edwards, J. S. (2003) Advances in flux balance analysis. Curr. Opin.Biotechnol.,14, 491–496
CrossRef
Pubmed
Google scholar
|
[16] |
Orth, J. D., Thiele, I. and Palsson, B. Ø. (2010) What is flux balance analysis? Nat. Biotechnol., 28, 245–248
CrossRef
Pubmed
Google scholar
|
[17] |
Mahadevan, R. and Schilling, C. H. (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab. Eng., 5, 264–276
CrossRef
Pubmed
Google scholar
|
[18] |
Segrè, D., Vitkup, D. and Church, G. M. (2002) Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. USA, 99, 15112–15117
CrossRef
Pubmed
Google scholar
|
[19] |
Price, N. D., Reed, J. L. and Palsson, B. O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol., 2, 886–897
CrossRef
Pubmed
Google scholar
|
[20] |
Kim, J. and Reed, J. L. (2010) OptORF: Optimal metabolic and regulatory perturbations for metabolic engineering of microbial strains. BMC Syst. Biol., 4, 53
CrossRef
Pubmed
Google scholar
|
[21] |
Yang, L., Cluett, W. R. and Mahadevan, R. (2011) EMILiO: a fast algorithm for genome-scale strain design. Metab. Eng., 13, 272–281
CrossRef
Pubmed
Google scholar
|
[22] |
Burgard, A. P., Pharkya, P. and Maranas, C. D. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84, 647–657
CrossRef
Pubmed
Google scholar
|
[23] |
Pharkya, P. and Maranas, C. D. (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng., 8, 1–13
CrossRef
Pubmed
Google scholar
|
[24] |
Pharkya, P., Burgard, A. P. and Maranas, C. D. (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res., 14, 2367–2376
CrossRef
Pubmed
Google scholar
|
[25] |
Rockwell, G., Guido, N. J., and Church, G. M. (2013) Redirector: designing cell factories by reconstructing the metabolic objective. PLoS Comput. Biol., 9, e1002882
CrossRef
Pubmed
Google scholar
|
[26] |
Choi, H. S., Lee, S. Y., Kim, T. Y. and Woo, H. M. (2010) In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol., 76, 3097–3105
CrossRef
Pubmed
Google scholar
|
[27] |
Park, J. M., Park, H. M., Kim, W. J., Kim, H. U., Kim, T. Y. and Lee, S. Y. (2012) Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol., 6, 106
CrossRef
Pubmed
Google scholar
|
[28] |
Ranganathan, S., Suthers, P. F. and Maranas, C. D. (2010) OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput. Biol., 6, e1000744
CrossRef
Pubmed
Google scholar
|
[29] |
Cotten, C. and Reed, J. L. (2013) Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J., 8, 595–604
CrossRef
Pubmed
Google scholar
|
[30] |
Lun, D. S., Rockwell, G., Guido, N. J., Baym, M., Kelner, J. A., Berger, B., Galagan, J. E. and Church, G. M. (2009) Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol., 5, 296
CrossRef
Pubmed
Google scholar
|
[31] |
Egen, D. and Lun, D. S. (2012) Truncated branch and bound achieves efficient constraint-based genetic design. Bioinformatics, 28, 1619–1623
CrossRef
Pubmed
Google scholar
|
[32] |
Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., Broadbelt, L. J., Hatzimanikatis, V. and Palsson, B. Ø. (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol., 3, 121
CrossRef
Pubmed
Google scholar
|
[33] |
Jantama, K., Haupt, M. J., Svoronos, S. A., Zhang, X., Moore, J. C., Shanmugam, K. T. and Ingram, L. O. (2008) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol.Bioeng., 99, 1140–1153
CrossRef
Pubmed
Google scholar
|
[34] |
Sánchez, A. M., Bennett, G. N. and San, K.-Y. (2006) Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Metab. Eng., 8, 209–226
CrossRef
Pubmed
Google scholar
|
[35] |
Jensen, P. A. and Papin, J. A. (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics, 27, 541–547
CrossRef
Pubmed
Google scholar
|
[36] |
Ibarra, R. U., Edwards, J. S. and Palsson, B. O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 420, 186–189
CrossRef
Pubmed
Google scholar
|
[37] |
Sánchez, A. M., Bennett, G. N. and San, K. Y. (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol. Prog., 21, 358–365
CrossRef
Pubmed
Google scholar
|
[38] |
Sánchez, A. M., Bennett, G. N. and San, K.-Y. (2005) Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng., 7, 229–239
CrossRef
Pubmed
Google scholar
|
[39] |
Schellenberger, J., Que, R., Fleming, R. M. T., Thiele, I., Orth, J. D., Feist, A. M., Zielinski, D. C., Bordbar, A., Lewis, N. E., Rahmanian, S.,
CrossRef
Pubmed
Google scholar
|
[40] |
Schauer, R. (2000) Achievements and challenges of sialic acid research. Glycoconj. J., 17, 485–499
CrossRef
Pubmed
Google scholar
|
[41] |
Wang, B. (2009) Sialic acid is an essential nutrient for brain development and cognition. Annu. Rev. Nutr., 29, 177–222
CrossRef
Pubmed
Google scholar
|
[42] |
Ishikawa, M. and Koizumi, S. (2010) Microbial production of N-acetylneuraminic acid by genetically engineered Escherichia coli. Carbohydr. Res., 345, 2605–2609
CrossRef
Pubmed
Google scholar
|
[43] |
Tao, F., Zhang, Y., Ma, C. and Xu, P. (2011) One-pot bio-synthesis: N-acetyl-D-neuraminic acid production by a powerful engineered whole-cell catalyst. Sci. Rep., 1, 142
CrossRef
Pubmed
Google scholar
|
[44] |
Wang, H. H., Isaacs, F. J., Carr, P. A., Sun, Z. Z., Xu, G., Forest, C. R. and Church, G. M. (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460, 894–898
CrossRef
Pubmed
Google scholar
|
[45] |
Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya, A. D., Adkins, J. N., Schramm, G., Purvine, S. O., Lopez-Ferrer, D.,
CrossRef
Pubmed
Google scholar
|
[46] |
Qi, L. S., Larson, M. H., Gilbert, L. A., Doudna, J. A., Weissman, J. S., Arkin, A. P. and Lim, W. A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |