Oct 2013, Volume 4 Issue 10

  • Select all
    Ming Li, Wensu Liu, Tingting Yuan, Ruijun Bai, Guang-Hui Liu, Weizhou Zhang, Jing Qu
    Conggang Li, Chun Tang, Maili Liu
    Yueting Zheng, Xiaoxuan Lv, Jiangyun Wang
    Grace L. Peloquin, Yi-Bin Chen, Amir T. Fathi

    Acute myeloid leukemia (AML) is a heterogeneous clonal disorder of myeloid precursors arrested in their maturation, creating a diverse disease entity with a wide range of responses to historically standard treatment approaches. While signifi cant progress has been made in characterizing and individualizing the disease at diagnosis to optimally inform those affected, progress in treatment to reduce relapse and induce remission has been limited thus far. In addition to a brief summary of the factors that shape prognostication at diagnosis, this review attempts to expand on the current therapies under investigation that have shown promise in treating AML, including hypomethylating agents, gemtuzumab ozogamicin, FLT3 tyrosine kinase inhibitors, antisense oligonucleotides, and other novel therapies, including aurora kinases, mTOR and PI3 kinase inhibitors, PIM kinase inhibitors, HDAC inhibitors, and IDH targeted therapies. With these, and undoubtedly many others in the future, it is the hope that by combining more accurate prognostication with more effective therapies, patients will begin to have a different, and more complete, outlook on their disease that allows for safer and more successful treatment strategies.

    Xuejun C. Zhang, Kening Sun, Laixing Zhang, Xuemei Li, Can Cao

    GPCR proteins represent the largest family of signaling membrane proteins in eukaryotic cells. Their importance to basic cell biology, human diseases, and pharmaceutical interventions is well established. Many crystal structures of GPCR proteins have been reported in both active and inactive conformations. These data indicate that agonist binding alone is not suffi cient to trigger the conformational change of GPCRs necessary for binding of downstream G-proteins, yet other essential factors remain elusive. Based on analysis of available GPCR crystal structures, we identifi ed a potential conformational switch around the conserved Asp2.50, which consistently shows distinct conformations between inactive and active states. Combining the structural information with the current literature, we propose an energy-coupling mechanism, in which the interaction between a charge change of the GPCR protein and the membrane potential of the living cell plays a key role for GPCR activation.

    Gol Nam, Yi Shi, Myongchol Ryu, Qihui Wang, Hao Song, Jun Liu, Jinghua Yan, Jianxun Qi, George F Gao

    Leukocyte immunoglobulin-like receptors (LILRs), also called CD85s, ILTs, or LIRs, are important mediators of immune activation and tolerance that contain tandem immunoglobulin (Ig)-like folds. There are 11 (in addition to two pseudogenes) LILRs in total, two with two Ig-like domains (D1D2) and the remaining nine with four Ig-like domains (D1D2D3D4). Thus far, the structural features of the D1D2 domains of LILR proteins are well defi ned, but no structures for the D3D4 domains have been reported. This is a very important fi eld to be studied as it relates to the unknown functions of the D3D4 domains, as well as their relative orientation to the D1D2 domains on the cell surface. Here, we report the crystal structures of the D3D4 domains of both LILRB1 and LILRB2. The two Iglike domains of both LILRB1-D3D4 and LILRB2-D3D4 are arranged at an acute angle (~60°) to form a bent structure, resembling the structures of natural killer inhibitory receptors. Based on these two D3D4 domain structures and previously reported D1D2/HLA I complex structures, two alternative models of full-length (four Ig-like domains) LILR molecules bound to HLA I are proposed.

    Jinhua Xu, Xiaochao Wei, Limin Yan, Dan Liu, Yuanyuan Ma, Yu Guo, Chune Peng, Honggang Zhou, Cheng Yang, Zhiyong Lou, W enqing Shui

    Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity. It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-associated molecular patterns (PAMPs). Although site-specifi c phosphorylation is speculated to mediate the activation and function of BIK1, few studies have been devoted to complete profiling of BIK1 phosphorylation residues. Here, we identified nineteen in vitro autophosphorylation sites of BIK1 including three phosphotyrosine sites, thereby proving BIK1 is a dual-specifi city kinase for the fi rst time. The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spectrometry (MS). Thr-237, Thr-242 and Tyr-250 were found to most signifi cantly affect BIK1 activity in autophosphorylation and phosphorylation of BAK1 in vitro. A structural model of BIK1 was built to further illustrate the molecular functions of specifi c phosphorylation residues. We also mapped new sites of FLS2 phosphorylation by BIK1, which are different from those by BAK1. These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and mediates downstream signaling specifi city.

    Yao Sun, Xiangxi Wang, Shuai Yuan, Minghao Dang, Xuemei Li, Xuejun C. Zhang, Zihe Rao

    Coxsackievirus A16 belongs to the family Picornaviridae, and is a major agent of hand-foot-and-mouth disease that infects mostly children, and to date no vaccines or antiviral therapies are available. 2A protease of enterovirus is a nonstructural protein and possesses both self-cleavage activity and the ability to cleave the eukaryotic translation initiation factor 4G. Here we present the crystal structure of coxsackievirus A16 2A protease, which interestingly forms hexamers in crystal as well as in solution. This structure shows an open conformation, with its active site accessible, ready for substrate binding and cleavage activity. In conjunction with a previously reported “closed” state structure of human rhinovirus 2, we were able to develop a detailed hypothesis for the conformational conversion triggered by two “switcher” residues Glu88 and Tyr89 located within the bll2-cII loop. Substrate recognition assays revealed that amino acid residues P1′, P2 and P4 are essential for substrate specificity, which was verifi ed by our substrate binding model. In addition, we compared the in vitro cleavage effi ciency of 2A proteases from coxsackievirus A16 and enterovirus 71 upon the same substrates by fl uorescence resonance energy transfer (FRET), and observed higher protease activity of enterovirus 71 compared to that of coxsackievirus A16. In conclusion, our study shows an open conformation of coxsackievirus A16 2A protease and the underlying mechanisms for conformational conversion and substrate specifi city. These new insights should facilitate the future rational design of effi cient 2A protease inhibitors.

    Chengliang Chai, You Yu, Wei Zhuo, Haifeng Zhao, Xiaolu Li, Na Wang, Jijie Chai, Maojun Yang

    The transition metal cobalt, an essential cofactor for many enzymes in prokaryotes, is taken up by several specifi c transport systems. The CbiMNQO protein complex belongs to type-1 energy-coupling factor (ECF) transporters and is a widespread group of microbial cobalt transporters. CbiO is the ATPase subunit (A-component) of the cobalt transporting system in the gram-negative thermophilic bacterium Thermoanaerobacter tengcongensis. Here we report the crystal structure of a nucleotide-free CbiO at a resolution of 2.3 ?. CbiO contains an N-terminal canonical nucleotide-binding domain (NBD) and C-terminal helical domain. Structural and biochemical data show that CbiO forms a homodimer mediated by the NBD and the C-terminal domain. Interactions mainly via conserved hydrophobic amino acids between the two C-terminal domains result in formation of a four-helix bundle. Structural comparison with other ECF transporters suggests that non-conserved residues outside the T-component binding groove in the A component likely act as a specifi city determinant for T components. Together, our data provide information on understanding of the structural organization and interaction of the CbiMNQO system.