An open conformation determined by a structural switch for 2A protease from coxsackievirus A16

Yao Sun1,2, Xiangxi Wang1,2, Shuai Yuan1,2, Minghao Dang1,2, Xuemei Li1, Xuejun C. Zhang1, Zihe Rao1()

PDF(1401 KB)
PDF(1401 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (10) : 782-792. DOI: 10.1007/s13238-013-3914-z
RESEARCH ARTICLE
RESEARCH ARTICLE

An open conformation determined by a structural switch for 2A protease from coxsackievirus A16

  • Yao Sun1,2, Xiangxi Wang1,2, Shuai Yuan1,2, Minghao Dang1,2, Xuemei Li1, Xuejun C. Zhang1, Zihe Rao1()
Author information +
History +

Abstract

Coxsackievirus A16 belongs to the family Picornaviridae, and is a major agent of hand-foot-and-mouth disease that infects mostly children, and to date no vaccines or antiviral therapies are available. 2A protease of enterovirus is a nonstructural protein and possesses both self-cleavage activity and the ability to cleave the eukaryotic translation initiation factor 4G. Here we present the crystal structure of coxsackievirus A16 2A protease, which interestingly forms hexamers in crystal as well as in solution. This structure shows an open conformation, with its active site accessible, ready for substrate binding and cleavage activity. In conjunction with a previously reported “closed” state structure of human rhinovirus 2, we were able to develop a detailed hypothesis for the conformational conversion triggered by two “switcher” residues Glu88 and Tyr89 located within the bll2-cII loop. Substrate recognition assays revealed that amino acid residues P1′, P2 and P4 are essential for substrate specificity, which was verifi ed by our substrate binding model. In addition, we compared the in vitro cleavage effi ciency of 2A proteases from coxsackievirus A16 and enterovirus 71 upon the same substrates by fl uorescence resonance energy transfer (FRET), and observed higher protease activity of enterovirus 71 compared to that of coxsackievirus A16. In conclusion, our study shows an open conformation of coxsackievirus A16 2A protease and the underlying mechanisms for conformational conversion and substrate specifi city. These new insights should facilitate the future rational design of effi cient 2A protease inhibitors.

Keywords

coxsackievirus A16 / 2A protease / crystal structure / switcher

Cite this article

Download citation ▾
Yao Sun, Xiangxi Wang, Shuai Yuan, Minghao Dang, Xuemei Li, Xuejun C. Zhang, Zihe Rao. An open conformation determined by a structural switch for 2A protease from coxsackievirus A16. Prot Cell, 2013, 4(10): 782‒792 https://doi.org/10.1007/s13238-013-3914-z

References

[1] Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., . (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213-221 .10.1107/S0907444909052925
[2] Badorff, C., Lee, G.H., Lamphear, B.J., Martone, M.E., Campbell, K.P., Rhoads, R.E., and Knowlton, K.U. (1999). Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat Med 5, 320-326 .10.1038/6543
[3] Baxter, N.J., Roetzer, A., Liebig, H.D., Sedelnikova, S.E., Hounslow, A.M., Skern, T., and Waltho, J.P. (2006). Structure and dynamics of coxsackievirus B4 2A proteinase, an enyzme involved in the etiology of heart disease. J Virol 80, 1451-1462 .10.1128/JVI.80.3.1451-1462.2006
[4] Belsham, G.J., and Sonenberg, N. (2000). Picornavirus RNA translation: roles for cellular proteins. Trends Microbiol 8, 330-335 .10.1016/S0966-842X(00)01788-1
[5] Cai, Q., Yameen, M., Liu, W., Gao, Z., Li, Y., Peng, X., Cai, Y., Wu, C., Zheng, Q., and Li, J. (2013). Conformational plasticity of the 2A proteinase from enterovirus 71 . J Virol 87, 7348-7356 .10.1128/JVI.03541-12
[6] Castelló, A., álvarez, E., and Carrasco, L. (2011). The multifaceted poliovirus 2A protease: regulation of gene expression by picornavirus proteases. J Biomed Biotechnol 2011: 369648 .10.1155/2011/369648
[7] DeLano, W.L. (2002). The PyMOL molecular graphics syste m. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .
[8] Etchison, D., Milburn, S.C., Edery, I., Sonenberg, N., and Hershey, J.W. (1982). Inhibition of HeLa cell protein synthesis following po liovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem 257, 14806-14810 .
[9] Falah, N., Violot, S., Decimo, D., Berri, F., Foucault-Grunenwald, M.L., Ohlmann, T., Schuffenecker, I., Morfi n, F., Lina, B., Riteau, B., . (2012). Ex vivo and in vivo inhibition of human rhinovirus replication by a new pseudosubstrate of viral 2A protease. J Virol 86, 691-704 .10.1128/JVI.05263-11
[10] Foeger, N., Glaser, W., and Skern, T. (2002). Recognition of eukaryotic initiation factor 4G isoforms by picornaviral proteinases. J Biol Chem 277, 44300-44309 .10.1074/jbc.M208006200
[11] Gouet, P., Courcelle, E., and Stuart, D.I. (1999). ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305-308 .10.1093/bioinformatics/15.4.305
[12] Gradi, A., Svitkin, Y.V., Imataka, H., and Sonenberg, N. (1998). Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95, 11089-11094 .10.1073/pnas.95.19.11089
[13] Joachims, M., Van Breugel, P.C., and Lloyd, R.E. (1999). Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J Virol 73, 718-727 .
[14] Krissinel, E., and Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J Mol Biol 372, 774-797 .10.1016/j.jmb.2007.05.022
[15] Lamphear, B., Yan, R., Yang, F., Waters, D., Liebig, H., Klump, H., Kuechler, E., Skern, T., and Rhoads, R. (1993). Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human Coxsackievirus and rhinovirus. J Biol Chem 268, 19200-19203 .
[16] Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam, H., Valentin, F., Wallace, I., Wilm, A., and Lopez, R. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947-2948 .10.1093/bioinformatics/btm404
[17] Laskowski, R.A., Macarthur, M.W., Moss, D.S., and Thornton, J.M. (1993). Procheck: a program to check the stereochemical quality of protein structure s. J Appl Crystallogr 26, 283-291 .10.1107/S0021889892009944
[18] Li, X., Lu, H.H., Mueller, S., and Wimmer, E. (2001). The C-terminal residues of poliovirus proteinase 2A(pro) are critical for viral RNA replication but not for cis- or trans-proteolytic cleavage. J Gen Virol 82, 397-408 .
[19] Liebig, H.D., Ziegler, E., Yan, R., Hartmuth, K., Klump, H., Kowalski, H., Blaas, D., Sommergruber, W., Frasel, L., Lamphear, B., . (1993). Purifi cation of two picornaviral 2A proteinases: interaction with eIF-4 gamma and influence on in vitro translation. Biochemistry 32, 7581-7588 .10.1021/bi00080a033
[20] Lu, J., Yi, L., Zhao, J., Yu, J., Chen, Y., Lin, M.C., Kung, H.F., and He, M.L. (2012). Enterovirus 71 disrupts interferon signaling by reducing the level of interferon receptor 1. J Virol 86 , 3767-3776 .10.1128/JVI.06687-11
[21] Matthews, B.W. (1968). Solvent content of protein crystals. J Mol Biol 33 , 33, 491-497 .10.1016/0022-2836(68)90205-2
[22] McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J Appl Crystallogr 40, 658-674 .10.1107/S0021889807021206
[23] Muto, S., Miyoshi, H., Nishikawa, H., and Nakashima, H. (2006). Novel recognition sequence of coxsackievirus 2A proteinase. Biochem Biophys Res Commun 348, 1436-1442 .10.1016/j.bbrc.2006.08.012
[24] Oberste, M.S., Maher, K., Kilpatrick, D.R., and Pallansch, M.A. (1999). Molecular evolution of the human enteroviruses: Correlation of serotype with VP1 sequence and application to picornavirus classify cation. J Virol 73, 1941-1948 .
[25] Organization, W.H. (2011) . A guide to clinical management and public health response for hand, foot and mouth disease (HFMD). Geneva: WHO .
[26] Petersen, J.F., Cherney, M.M., Liebig, H.D., Skern, T., Kuechler, E., and James, M.N. (1999). The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J 18, 5463-5475 .10.1093/emboj/18.20.5463
[27] Ren, J., Wang, X., Hu, Z., Gao, Q., Sun, Y., Li, X., Porta, C., Walter, T.S., Gilbert, R.J., and Zhao, Y. (2013). Picornavirus uncoating intermediate captured in atomic detail. Nat Commun 4: 1929.
[28] Seeliger, D., and de Groot, B.L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 24, 417-422 .10.1007/s10822-010-9352-6
[29] Sommergruber, W., Ahorn, H., Klump, H., Seipelt, J., Zoephel, A., Fessl, F., Krystek, E., Blaas, D., Kuechler, E., Liebig, H.D., . (1994). 2A proteinases of coxsackie- and rhinovirus cleave peptides derived from eIF-4 gamma via a common recognition motif. Virology 198, 741-745 .10.1006/viro.1994.1089
[30] Toyoda, H., Nicklin, M.J., Murray, M.G., Anderson, C.W., Dunn, J.J., Studier, F.W., and Wimmer, E. (1986). A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45, 761-770 .10.1016/0092-8674(86)90790-7
[31] Wang, B., Xi, X., Lei, X., Zhang, X., Cui, S., Wang, J., Jin, Q., and Zhao, Z. (2013). Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 9, e1003231.10.1371/journal.ppat.1003231
[32] Wang, X., Peng, W., Ren, J., Hu, Z., Xu, J., Lou, Z., Li, X., Yin, W., Shen, X., and Porta, C. (2012). A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nat Struct Mol Biol 19, 424-429 .10.1038/nsmb.2255
[33] Yang, C.H., Li, H.C., Jiang, J.G., Hsu, C.F., Wang, Y.J., Lai, M.J., Juang, Y.L., and Lo, S.Y. (2010). Enterovirus type 71 2A protease functions as a transcriptional activator in yeast. J Biomed Sci 17, 65 . Ypma-Wong, M.F., Dewalt, P.G., Johnson, V.H., Lamb, J.G., and Semler, B.L. (1988). Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166, 265-270 .
[34] Zhao, K., Han, X., Wang, G.J., Hu, W., Zhang, W.Y., and Yu, X.F. (2011). Circulating coxsackievirus A16 identifi ed as recombinant type A human enterovirus, China. Emerg Infect Dis 17, 1537-1540 .
AI Summary AI Mindmap
PDF(1401 KB)

Accesses

Citations

Detail

Sections
Recommended

/