Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1

Jinhua Xu1,2, Xiaochao Wei1,2, Limin Yan3, Dan Liu1,2, Yuanyuan Ma3, Yu Guo2,4, Chune Peng1,2, Honggang Zhou2,4, Cheng Yang2,4, Zhiyong Lou3(), W enqing Shui1,2()

PDF(916 KB)
PDF(916 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (10) : 771-781. DOI: 10.1007/s13238-013-3053-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1

  • Jinhua Xu1,2, Xiaochao Wei1,2, Limin Yan3, Dan Liu1,2, Yuanyuan Ma3, Yu Guo2,4, Chune Peng1,2, Honggang Zhou2,4, Cheng Yang2,4, Zhiyong Lou3(), W enqing Shui1,2()
Author information +
History +

Abstract

Arabidopsis BOTRYTIS-INDUCED KINASE1 (BIK1) is a receptor-like cytoplasmic kinase acting early in multiple signaling pathways important for plant growth and innate immunity. It is known to form a signaling complex with a cell-surface receptor FLS2 and a co-receptor kinase BAK1 to transduce signals upon perception of pathogen-associated molecular patterns (PAMPs). Although site-specifi c phosphorylation is speculated to mediate the activation and function of BIK1, few studies have been devoted to complete profiling of BIK1 phosphorylation residues. Here, we identified nineteen in vitro autophosphorylation sites of BIK1 including three phosphotyrosine sites, thereby proving BIK1 is a dual-specifi city kinase for the fi rst time. The kinase activity of BIK1 substitution mutants were explicitly assessed using quantitative mass spectrometry (MS). Thr-237, Thr-242 and Tyr-250 were found to most signifi cantly affect BIK1 activity in autophosphorylation and phosphorylation of BAK1 in vitro. A structural model of BIK1 was built to further illustrate the molecular functions of specifi c phosphorylation residues. We also mapped new sites of FLS2 phosphorylation by BIK1, which are different from those by BAK1. These in vitro results could provide new hypotheses for more in-depth in vivo studies leading to deeper understanding of how phosphorylation contributes to BIK1 activation and mediates downstream signaling specifi city.

Keywords

phosphorylation / BIK1 / receptor-like cytoplasmic kinase / quantitative mass spectrometry

Cite this article

Download citation ▾
Jinhua Xu, Xiaochao Wei, Limin Yan, Dan Liu, Yuanyuan Ma, Yu Guo, Chune Peng, Honggang Zhou, Cheng Yang, Zhiyong Lou, W enqing Shui. Identification and functional analysis of phosphorylation residues of the Arabidopsis BOTRYTIS-INDUCED KINASE1. Prot Cell, 2013, 4(10): 771‒781 https://doi.org/10.1007/s13238-013-3053-6

References

[1] Antolin-Llovera, M., Ried, M.K., Binder, A., and Parniske, M. (2012). Receptor kinase signaling pathways in plant-microbe interactions. Annu Rev Phytopathol 50, 451-473 .10.1146/annurev-phyto-081211-173002
[2] Boersema, P.J., Foong, L.Y., Ding, V.M., Lemeer, S., van Breukelen, B., Philp, R., Boekhorst, J., Snel, B., den Hertog, J., Choo, A.B., . (2010). In-depth qualitative and quantitative profi ling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffi nity purifi cation and stable isotope dimethyl labeling. Mol Cell Proteomics 9, 84-99 .10.1074/mcp.M900291-MCP200
[3] Bol ler, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406 .10.1146/annurev.arplant.57.032905.105346
[4] Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324, 742-744 .10.1126/science.1171647
[5] Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A fl agellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448, 497-500 .10.1038/nature05999
[6] Greeff, C., Roux, M., Mundy, J., and Petersen, M. (2012). Rec eptorlike kinase complexes in plant innate immunity. Front Plant Sci 3, 209.
[7] Gunawardena, H.P., Huang, Y., Kenjale, R., Wang, H., Xie, L., and Chen, X. (2011). Unambiguous characterization of site-specific phosphorylation of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) in Toll-like receptor 4 (TLR4)-mediated signaling. J Biol Chem 286, 10897-10910 .10.1074/jbc.M110.168179
[8] Hoppe, E., Berne, P.F., Stock, D., Rasmussen, J.S., Moller, N.P., Ullrich, A., and Huber, R. (1994). Expression, purifi cation and crystallization of human phosphotyrosine phosphatase 1B. Eur J Biochem 223, 1069-1077 .10.1111/j.1432-1033.1994.tb19085.x
[9] Johnson, L.N., Noble, M.E., and Owen, D.J. (1996). Active and inactive protein kinases: structural basis for regulation. Cell 85, 149-158 .10.1016/S0092-8674(00)81092-2
[10] Kim, D.S., and Hwang, B.K. (2011). The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses. Plant J 66, 642-655 .10.1111/j.1365-313X.2011.04525.x
[11] Laluk, K., Luo, H., Chai, M., Dhawan, R., Lai, Z., and Mengiste, T. (2011). Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23, 2831-2849 .10.1105/tpc.111.087122
[12] Lowe, E.D., Noble, M.E., Skamnaki, V.T., Oikonomakos, N.G., Owen, D.J., and Johnson, L.N.(1997). The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition. EMBO J 16, 6646-6658 .10.1093/emboj/16.22.6646
[13] Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. (2010a). A receptor-like cytoplasmic kinase, BIK1, associates with a fl agellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107, 496-501 .10.1073/pnas.0909705107
[14] Lu, D., Wu, S., He, P., and Shan, L. (2010b). Phosphorylation of receptor-like cytoplasmic kinases by bacterial fl agellin. Plant Signal Behav 5 . Nol en, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases; controlling activity through activation segment conformation. Mol Cell 15, 661-675 .10.1016/j.molcel.2004.08.024
[15] Oh, M.H., Clouse, S.D., and Huber, S.C. (2012). Tyr osine phosphorylation of the BRI1 receptor kinase occurs via a post-translational modifi cation and is activated by the juxtamembrane domain. Front Plant Sci 3, 175.10.3389/fpls.2012.00175
[16] Oh, M.H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., and Huber, S.C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc Natl Acad Sci USA 106, 658-663 .10.1073/pnas.0810249106
[17] Oh, M.H., Wang, X., Wu, X., Zhao, Y., Clouse, S.D., and Huber, S.C. (2010). Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci USA 107, 17827-17832 .10.1073/pnas.0915064107
[18] Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet 7, e1002046.
[19] Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci USA 98, 10763-10768 .10.1073/pnas.181141598
[20] Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 132, 530-543 .10.1104/pp.103.021964
[21] Soderblom, E.J., Philipp, M., Thompson, J.W., Caron, M.G., and Moseley, M.A. (2011). Quantitative label-free phosphoproteomics strategy for multifaceted experimental designs. Anal Chem 83, 3758-3764 .10.1021/ac200213b
[22] Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257-273 .10.1105/tpc.105.035576
[23] Voolstra, O., Beck, K., Oberegelsbacher, C., Pfannstiel, J., and Huber, A. (2010). Light-dependent phosphorylation of the drosophila transient receptor potential ion channel. J Biol Chem 285, 14275-14284 .10.1074/jbc.M110.102053
[24] Wang, X., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S.D. (2005). Ide ntifi cation and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17, 1685-1703 .10.1105/tpc.105.031393
[25] Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev Cell 15, 220-235 .10.1016/j.devcel.2008.06.011
[26] Wang, Z., Liu, J., Sudom, A., Ayres, M., Li, S., Wesche, H., Powers, J.P., and Walker, N.P. (2006). Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Structure 14, 1835-1844 .10.1016/j.str.2006.11.001
[27] Yan, L., Ma, Y., Liu, D., Wei, X., Sun, Y., Chen, X., Zhao, H., Zhou, J., Wang, Z., Shui, W., . (2012). Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1. Cell Res 22, 1304-1308 .10.1038/cr.2012.74
[28] Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S., . (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290-301 .10.1016/j.chom.2010.03.007
[29] Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures. Mol Plant 3, 783-793 .10.1093/mp/ssq035
AI Summary AI Mindmap
PDF(916 KB)

Accesses

Citations

Detail

Sections
Recommended

/