[1] Antolin-Llovera, M., Ried, M.K., Binder, A., and Parniske, M. (2012). Receptor kinase signaling pathways in plant-microbe interactions.
Annu Rev Phytopathol 50, 451-473 .
10.1146/annurev-phyto-081211-173002[2] Boersema, P.J., Foong, L.Y., Ding, V.M., Lemeer, S., van Breukelen, B., Philp, R., Boekhorst, J., Snel, B., den Hertog, J., Choo, A.B.,
. (2010). In-depth qualitative and quantitative profi ling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffi nity purifi cation and stable isotope dimethyl labeling.
Mol Cell Proteomics 9, 84-99 .
10.1074/mcp.M900291-MCP200[3] Bol ler, T., and Felix, G. (2009). A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors.
Annu Rev Plant Biol 60, 379-406 .
10.1146/annurev.arplant.57.032905.105346[4] Boller, T., and He, S.Y. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens.
Science 324, 742-744 .
10.1126/science.1171647[5] Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A fl agellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence.
Nature 448, 497-500 .
10.1038/nature05999[6] Greeff, C., Roux, M., Mundy, J., and Petersen, M. (2012). Rec eptorlike kinase complexes in plant innate immunity.
Front Plant Sci 3, 209.
[7] Gunawardena, H.P., Huang, Y., Kenjale, R., Wang, H., Xie, L., and Chen, X. (2011). Unambiguous characterization of site-specific phosphorylation of leucine-rich repeat Fli-I-interacting protein 2 (LRRFIP2) in Toll-like receptor 4 (TLR4)-mediated signaling.
J Biol Chem 286, 10897-10910 .
10.1074/jbc.M110.168179[8] Hoppe, E., Berne, P.F., Stock, D., Rasmussen, J.S., Moller, N.P., Ullrich, A., and Huber, R. (1994). Expression, purifi cation and crystallization of human phosphotyrosine phosphatase 1B.
Eur J Biochem 223, 1069-1077 .
10.1111/j.1432-1033.1994.tb19085.x[9] Johnson, L.N., Noble, M.E., and Owen, D.J. (1996). Active and inactive protein kinases: structural basis for regulation.
Cell 85, 149-158 .
10.1016/S0092-8674(00)81092-2[10] Kim, D.S., and Hwang, B.K. (2011). The pepper receptor-like cytoplasmic protein kinase CaPIK1 is involved in plant signaling of defense and cell-death responses.
Plant J 66, 642-655 .
10.1111/j.1365-313X.2011.04525.x[11] Laluk, K., Luo, H., Chai, M., Dhawan, R., Lai, Z., and Mengiste, T. (2011). Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis.
Plant Cell 23, 2831-2849 .
10.1105/tpc.111.087122[12] Lowe, E.D., Noble, M.E., Skamnaki, V.T., Oikonomakos, N.G., Owen, D.J., and Johnson, L.N.(1997). The crystal structure of a phosphorylase kinase peptide substrate complex: kinase substrate recognition.
EMBO J 16, 6646-6658 .
10.1093/emboj/16.22.6646[13] Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. (2010a). A receptor-like cytoplasmic kinase, BIK1, associates with a fl agellin receptor complex to initiate plant innate immunity.
Proc Natl Acad Sci U S A 107, 496-501 .
10.1073/pnas.0909705107[14] Lu, D., Wu, S., He, P., and Shan, L. (2010b). Phosphorylation of receptor-like cytoplasmic kinases by bacterial fl agellin.
Plant Signal Behav 5 . Nol en, B., Taylor, S., and Ghosh, G. (2004). Regulation of protein kinases; controlling activity through activation segment conformation.
Mol Cell 15, 661-675 .
10.1016/j.molcel.2004.08.024[15] Oh, M.H., Clouse, S.D., and Huber, S.C. (2012). Tyr osine phosphorylation of the BRI1 receptor kinase occurs via a post-translational modifi cation and is activated by the juxtamembrane domain.
Front Plant Sci 3, 175.
10.3389/fpls.2012.00175[16] Oh, M.H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., and Huber, S.C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis.
Proc Natl Acad Sci USA 106, 658-663 .
10.1073/pnas.0810249106[17] Oh, M.H., Wang, X., Wu, X., Zhao, Y., Clouse, S.D., and Huber, S.C. (2010). Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression.
Proc Natl Acad Sci USA 107, 17827-17832 .
10.1073/pnas.0915064107[18] Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1.
PLoS Genet 7, e1002046.
[19] Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases.
Proc Natl Acad Sci USA 98, 10763-10768 .
10.1073/pnas.181141598[20] Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis.
Plant Physiol 132, 530-543 .
10.1104/pp.103.021964[21] Soderblom, E.J., Philipp, M., Thompson, J.W., Caron, M.G., and Moseley, M.A. (2011). Quantitative label-free phosphoproteomics strategy for multifaceted experimental designs.
Anal Chem 83, 3758-3764 .
10.1021/ac200213b[22] Veronese, P., Nakagami, H., Bluhm, B., Abuqamar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2006). The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens.
Plant Cell 18, 257-273 .
10.1105/tpc.105.035576[23] Voolstra, O., Beck, K., Oberegelsbacher, C., Pfannstiel, J., and Huber, A. (2010). Light-dependent phosphorylation of the drosophila transient receptor potential ion channel.
J Biol Chem 285, 14275-14284 .
10.1074/jbc.M110.102053[24] Wang, X., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S.D. (2005). Ide ntifi cation and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase.
Plant Cell 17, 1685-1703 .
10.1105/tpc.105.031393[25] Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling.
Dev Cell 15, 220-235 .
10.1016/j.devcel.2008.06.011[26] Wang, Z., Liu, J., Sudom, A., Ayres, M., Li, S., Wesche, H., Powers, J.P., and Walker, N.P. (2006). Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper.
Structure 14, 1835-1844 .
10.1016/j.str.2006.11.001[27] Yan, L., Ma, Y., Liu, D., Wei, X., Sun, Y., Chen, X., Zhao, H., Zhou, J., Wang, Z., Shui, W.,
. (2012). Structural basis for the impact of phosphorylation on the activation of plant receptor-like kinase BAK1.
Cell Res 22, 1304-1308 .
10.1038/cr.2012.74[28] Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, X., Chen, S.,
. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector.
Cell Host Microbe 7, 290-301 .
10.1016/j.chom.2010.03.007[29] Zhang, J., and Zhou, J.M. (2010). Plant immunity triggered by microbial molecular signatures.
Mol Plant 3, 783-793 .
10.1093/mp/ssq035