Structural basis for a homodimeric ATPase subunit of an ECF transporter

Chengliang Chai1,3, You Yu2, Wei Zhuo2, Haifeng Zhao2, Xiaolu Li2, Na Wang2, Jijie Chai1,2, Maojun Yang2()

PDF(1342 KB)
PDF(1342 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (10) : 793-801. DOI: 10.1007/s13238-013-3915-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Structural basis for a homodimeric ATPase subunit of an ECF transporter

  • Chengliang Chai1,3, You Yu2, Wei Zhuo2, Haifeng Zhao2, Xiaolu Li2, Na Wang2, Jijie Chai1,2, Maojun Yang2()
Author information +
History +

Abstract

The transition metal cobalt, an essential cofactor for many enzymes in prokaryotes, is taken up by several specifi c transport systems. The CbiMNQO protein complex belongs to type-1 energy-coupling factor (ECF) transporters and is a widespread group of microbial cobalt transporters. CbiO is the ATPase subunit (A-component) of the cobalt transporting system in the gram-negative thermophilic bacterium Thermoanaerobacter tengcongensis. Here we report the crystal structure of a nucleotide-free CbiO at a resolution of 2.3 ?. CbiO contains an N-terminal canonical nucleotide-binding domain (NBD) and C-terminal helical domain. Structural and biochemical data show that CbiO forms a homodimer mediated by the NBD and the C-terminal domain. Interactions mainly via conserved hydrophobic amino acids between the two C-terminal domains result in formation of a four-helix bundle. Structural comparison with other ECF transporters suggests that non-conserved residues outside the T-component binding groove in the A component likely act as a specifi city determinant for T components. Together, our data provide information on understanding of the structural organization and interaction of the CbiMNQO system.

Keywords

CbiO / Cobalt / ECF / ATPase / Thermoanaerobacter tengcongensis

Cite this article

Download citation ▾
Chengliang Chai, You Yu, Wei Zhuo, Haifeng Zhao, Xiaolu Li, Na Wang, Jijie Chai, Maojun Yang. Structural basis for a homodimeric ATPase subunit of an ECF transporter. Prot Cell, 2013, 4(10): 793‒801 https://doi.org/10.1007/s13238-013-3915-y

References

[1] Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., Mc-Coy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K.,and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58, 1948-1954 .10.1107/S0907444902016657
[2] Berntsson, R.P., ter Beek, J., Majsnerowska, M., Duurkens, R.H., Puri, P., Poolman, B., and Slotboom, D.J. (2012). Structural divergence of paralogous S components from ECF-type ABC transporters. Proc Natl Acad Sci USA 109, 13990-13995 .10.1073/pnas.1203219109
[3] Chen, J., Lu, G., Lin, J., Davidson, A.L., and Quiocho, F.A. (2003). A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle. Mol Cell 12, 651-661 .10.1016/j.molcel.2003.08.004
[4] Collaborative Computational Project, N. (1994). The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50, 760-763 .10.1107/S0907444994003112
[5] Dean, M., and Allikmets, R. (1995). Evolution of ATP-binding cassette transporter genes. Curr Opin Genet Dev 5 , 779-785 .10.1016/0959-437X(95)80011-S
[6] Dean, M., Hamon, Y., and Chimini, G. (2001). The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 42, 1007-1017 .
[7] Eitinger, T., Suhr, J., Moore, L., and Smith, J.A. (2005). Secondary transporters for nickel and cobalt ions: theme and variations. Biometals 18, 399-405 .10.1007/s10534-005-3714-x
[8] Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126-2132 .10.1107/S0907444904019158
[9] Erkens, G.B., Berntsson, R.P., Fulyani, F., Majsnerowska, M., Vujicic-Zagar, A., Ter Beek, J., Poolman, B., and Slotboom, D.J. (2011). The structural basis of modularity in ECF-type ABC transporters. Nat Struct Mol Biol 18, 755-760 .10.1038/nsmb.2073
[10] Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368-376 .10.1007/BF01734359
[11] Finkenwirth, F., Neubauer, O., Gunzenhauser, J., Schoknecht, J., Scolari, S., Stockl, M., Korte, T., Herrmann, A., and Eitinger, T. (2010). Subunit composition of an energy-coupling-factor-type biotin transporter analysed in living bacteria. Biochem J 431, 373-380 .
[12] Fisher, D.J., Fernandez, R.E., Adams, N.E., and Maurelli, A.T. (2012). Uptake of biotin by Chlamydia Spp. through the use of a bacterial transporter (BioY) and a host-cell transporter (SMVT). PLoS One 7, e46052.10.1371/journal.pone.0046052
[13] Hung, L.W., Wang, I.X., Nikaido, K., Liu, P.Q., Ames, G.F., and Kim, S.H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703-707 .10.1038/25393
[14] Karpowich, N.K., and Wang, D.N. (2013). Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci USA 110, 2534-2539 .10.1073/pnas.1217361110
[15] Kirsch, F., Frielingsdorf, S., Pohlmann, A., Ziomkowska, J., Herrmann, A., and Eitinger, T. (2012). Essential amino acid residues of BioY reveal that dimers are the functional S unit of the Rhodobacter capsulatus biotin transporter. J Bacteriol 194, 4505-4512 .10.1128/JB.00683-12
[16] Korkhov, V.M., Mireku, S.A., and Locher, K.P. (2012). Structure of AMP-PNP-bound vitamin B12 transporter BtuCD-F. Nature 490, 367-372 .10.1038/nature11442
[17] Li, X., Zhuo, W., Yu, J., Ge, J., Gu, J., Feng, Y., Yang, M., Wang, L., and Wang, N. (2013). Structure of the nucleotide-binding domain of a dipeptide ABC transporter reveals a novel iron-sulfur clusterbinding domain. Acta Crystallogr D Biol Crystallogr 69, 256-265 .10.1107/S0907444912045180
[18] Majsnerowska, M., Hanelt, I., Wunnicke, D., Schafer, L.V., Steinhoff, H.J., and Slotboom, D.J. (2013). Substrate-induced conformational changes in the S-component ThiT from an energy coupling factor transporter. Structure 21, 861-867 .10.1016/j.str.2013.03.007
[19] Mulrooney, S.B., and Hausinger, R.P. (2003). Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27, 239-261 .10.1016/S0168-6445(03)00042-1
[20] Neubauer, O., Alfandega, A., Schoknecht, J., Sternberg, U., Pohlmann, A., and Eitinger, T. (2009). Two essential arginine residues in the T components of energy-coupling factor transporters. J Bacteriol 191, 6482-6488 .10.1128/JB.00965-09
[21] Neubauer, O., Reiffl er, C., Behrendt, L., and Eitinger, T. (2011). Interactions among the A and T units of an ECF-type biotin transporter analyzed by site-specifi c crosslinking. PLoS One 6, e29087.10.1371/journal.pone.0029087
[22] Otwinowski, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol 276, 307-326 .10.1016/S0076-6879(97)76066-X
[23] Rodionov, D.A., Hebbeln, P., Gelfand, M.S., and Eitinger, T. (2006). Comparative and functional genomic analysis of prokaryotic nickel and cobalt uptake transporters: evidence for a novel group of ATPbinding cassette transporters. J Bacteriol 188, 317-327 .10.1128/JB.188.1.317-327.2006
[24] Scheffel, F., Demmer, U., Warkentin, E., Hulsmann, A., Schneider, E., and Ermler, U. (2005). Structure of the ATPase subunit CysA of the putative sulfate ATP-binding cassette (ABC) transporter from Alicyclobacillus acidocaldarius. FEBS Lett 579, 2953-2958 .10.1016/j.febslet.2005.04.017
[25] Siche, S., Neubauer, O., Hebbeln, P., and Eitinger, T. (2010). A bipartite S unit of an ECF-type cobalt transporter. Res Microbiol 161, 824-829 .10.1016/j.resmic.2010.09.010
[26] Story, R.M., Weber, I.T., and Steitz, T.A. (1992). The structure of the E. coli recA protein monomer and polymer. Nature 355, 318-325 .10.1038/355318a0
[27] ter Beek, J., Duurkens, R.H., Erkens, G.B., and Slotboom, D.J.( 2011). Quaternary structure and functional unit of energy coupling factor (ECF)-type transporters. J Biol Chem 286, 5471-5475 .10.1074/jbc.M110.199224
[28] Verdon, G., Albers, S.V., Dijkstra, B.W., Driessen, A.J., and Thunnissen, A.M. (2003). Crystal structures of the ATPase subunit of the glucose ABC transporter from Sulfolobus solfataricus: nucleotidefree and nucleotide-bound conformations. J Mol Biol 330, 343-358 .10.1016/S0022-2836(03)00575-8
[29] Wang, T., Fu, G., Pan, X., Wu, J., Gong, X., Wang, J., and Shi, Y. (2013). Structure of a bacterial energy-coupling factor transporter. Nature 497, 272-276 .10.1038/nature12045
[30] Xu, K., Zhang, M., Zhao, Q., Yu, F., Guo, H., Wang, C., He, F., Ding, J., and Zhang, P. (2013). Crystal structure of a folate energy-coupling factor transporter from Lactobacillus brevis. Nature 497, 268-271 .10.1038/nature12046
[31] Zhang, P., Wang, J., and Shi, Y. (2010). Structure and mechanism of the S component of a bacterial ECF transporter. Nature 468, 717-720 .10.1038/nature09488
AI Summary AI Mindmap
PDF(1342 KB)

Accesses

Citations

Detail

Sections
Recommended

/