GPCR activation: protonation and membrane potential

Xuejun C. Zhang(), Kening Sun, Laixing Zhang, Xuemei Li, Can Cao

PDF(879 KB)
PDF(879 KB)
Protein Cell ›› 2013, Vol. 4 ›› Issue (10) : 747-760. DOI: 10.1007/s13238-013-3073-2
REVIEW
REVIEW

GPCR activation: protonation and membrane potential

  • Xuejun C. Zhang(), Kening Sun, Laixing Zhang, Xuemei Li, Can Cao
Author information +
History +

Abstract

GPCR proteins represent the largest family of signaling membrane proteins in eukaryotic cells. Their importance to basic cell biology, human diseases, and pharmaceutical interventions is well established. Many crystal structures of GPCR proteins have been reported in both active and inactive conformations. These data indicate that agonist binding alone is not suffi cient to trigger the conformational change of GPCRs necessary for binding of downstream G-proteins, yet other essential factors remain elusive. Based on analysis of available GPCR crystal structures, we identifi ed a potential conformational switch around the conserved Asp2.50, which consistently shows distinct conformations between inactive and active states. Combining the structural information with the current literature, we propose an energy-coupling mechanism, in which the interaction between a charge change of the GPCR protein and the membrane potential of the living cell plays a key role for GPCR activation.

Keywords

GPCR / membrane potential / protonation / activation

Cite this article

Download citation ▾
Xuejun C. Zhang, Kening Sun, Laixing Zhang, Xuemei Li, Can Cao. GPCR activation: protonation and membrane potential. Prot Cell, 2013, 4(10): 747‒760 https://doi.org/10.1007/s13238-013-3073-2

References

[1] Angel, T.E., Chance, M.R., and Palczewski, K. (2009). Conserved waters mediate structural and functional activation of family A (rhodopsin- like) G protein-coupled receptors. Proc Natl Acad Sci U S A 10 6, 8555-8560 .10.1073/pnas.0903545106
[2] Ballesteros, J.A., Jensen, A.D., Liapakis, G., Rasmussen, S.G., Shi, L., Gether, U., and Javitch, J.A. (2001). Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6.J Biol Chem 276, 29171-29177 .10.1074/jbc.M103747200
[3] Ballesteros, J.A., and Weinstein, H. (1995). Integrated methods for the construction of three dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25, 366-428 .10.1016/S1043-9471(05)80049-7
[4] Ben-Chaim, Y., Chanda, B., Dascal, N., Bezanilla, F., Parnas, I., and Parnas, H. (2006). Movement of ‘gating charge’ is coupled to ligand binding in a G-protein-coupled receptor. Nature 444, 106-109 .10.1038/nature05259
[5] Bihoreau, C., Monnot, C., Davies, E., Teutsch, B., Bernstein, K.E., Corvol, P., and Clauser, E. (1993). Mutation of Asp74 of the rat angiotensin II receptor confers changes in antagonist affi nities and abolishes G-protein coupling. Proc Natl Acad Sci U S A 90, 5133-5137 .10.1073/pnas.90.11.5133
[6] Ceresa, B.P., and Limbird, L.E. (1994). Mutation of an aspartate residue highly conserved among G-protein-coupled receptors results in nonreciprocal disruption of alpha 2-adrenergic receptor-G-protein interactions. A negative charge at amino acid residue 79 forecasts alpha 2A-adrenergic receptor sensitivity to allosteric modulation by monovalent cations and fully effective receptor/G-protein coupling. J Biol Chem 269, 29557-29564 .
[7] Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G., Thian, F.S., Kobilka, T.S., Choi, H.J., Kuhn, P., Weis, W.I., Kobilka, B.K., . (2007). High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258-1265 .10.1126/science.1150577
[8] Chien, E.Y., Liu, W., Zhao, Q., Katritch, V., Han, G.W., Hanson, M.A., Shi, L., Newman, A.H., Javitch, J.A., Cherezov, V., . (2010). Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330, 1091-1095 .10.1126/science.1197410
[9] Choe, H.W., Kim, Y.J., Park, J.H., Morizumi, T., Pai, E.F., Krauss, N., Hofmann, K.P., Scheerer, P., and Ernst, O.P. (2011). Crystal structure of metarhodopsin II. Nature 471, 651-655 .10.1038/nature09789
[10] Conn, P.M., Ulloa-Aguirre, A., Ito, J., and Janovick, J.A. (2007). G protein-coupled receptor traffi cking in health and disease: lessons learned to prepare for therapeutic mutant rescue in vivo. Pharmacol Rev 59, 225-250 .10.1124/pr.59.3.2
[11] Daiyasu, H., Nemoto, W., and To h, H. (2012). Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors. Front Micr obiol 3, 264. DeCoursey, T.E . (2003). Voltage-gated proton channels and other proton transfer pathways. Physiol Rev 83, 475-579 .
[12] Dessen, A., Tang, J., Schmidt, H., Stahl, M., Clark, J.D., Seehra, J., and Somers, W.S. (1999). Crystal structure of human cytosolic phospholipase A2 reveals a novel topology and catalytic mechanism. Cell 97 , 349-360 .10.1016/S0092-8674(00)80744-8
[13] Eyring, G., and Mathies, R. (1979). Resonance Raman studies of bathorhodopsin: evidence for a protonated Schiff base linkage. Proc Natl Acad Sci U S A 76, 33-37 .10.1073/pnas.76.1.33
[14] Fahmy, K., Jager, F., Beck, M., Zvyaga, T.A., Sakmar, T.P., and Siebert, F. (1993). Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. Proc Natl Acad Sci U S A 90, 10206-10210 .10.1073/pnas.90.21.10206
[15] Gasperi, V., Dainese, E., Oddi, S., Sabatucci, A., and Maccarrone, M. (2013). GPR55 and its interaction with membrane lipids: comparison with other endocannabinoid-binding receptors. Curr Med Ch em 20, 64-78 .
[16] Ghanouni, P., Schambye, H., Seifert, R., Lee, T.W., Rasmussen, S.G., Gether, U., and Kobilka, B.K. (2000). The effect of pH on beta(2) adrenoceptor function. Evidence for protonation-dependent activation. J Biol Chem 275, 3121-3127 .10.1074/jbc.275.5.3121
[17] Granier, S., Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Weis, W.I., and Kobilka, B.K. (2012). Structure of the delta-opioid receptor bound to naltrindole. Nature 485, 400-404 .10.1038/nature11111
[18] Gripentrog, J.M., Jesaitis, A.J., and Miettinen, H.M. (2000). A single amino acid substitution (N297A) in the conserved NPXXY sequence of the human N-formyl peptide receptor results in inhibition of desensitization and endocytosis, and a dose-dependent shift in p42/44 mitogen-activated protein kinase activation and chemotaxis. Biochem J 352 Pt 2, 399-407 .10.1042/0264-6021:3520399
[19] Haga, K., Kruse, A.C., Asada, H., Yurugi-Kobayashi, T., Shiroishi, M., Zhang, C., Weis, W.I., Okada, T., Kobilka, B.K., Haga, T., . (2012). Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482, 547-551 .10.1038/nature10753
[20] Hanson, M.A., Cherezov, V., Griffi th, M.T., Roth, C.B., Jaakola, V.P., Chien, E.Y., Velasquez, J., Kuhn, P., and Stevens, R.C. (2008). A specifi c cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16, 897-905 .10.1016/j.str.2008.05.001
[21] Hanson, M.A., Roth, C.B., Jo, E., Griffi th, M.T., Scott, F.L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S.M., Schuerer, S.C., . (2012). Crystal structure of a lipid G protein-coupled receptor. Science 335, 851-855 .10.1126/science.1215904
[22] Healy, D.P. (2002). Genetic analysis of G protein-coupled receptor genes. Methods Enzymol 343, 448-459 .10.1016/S0076-6879(02)43151-5
[23] Hulme, E.C. (2013). GPCR activation: a mutagenic spotlight on crystal structures. Trends Pharmacol Sci 34, 67-84 .10.1016/j.tips.2012.11.002
[24] Illergard, K., Kauko, A., and Elofsson, A. (2011). Why are polar residues within the membrane core evolutionary conserved? Protei ns 79, 79-91 .10.1002/prot.22859
[25] Im, D.S. (2005). Two ligands for a GPCR, proton vs lysolipid. Acta pharmacologica Sinica 26, 1435-1441 .10.1111/j.1745-7254.2005.00237.x
[26] Jaakola, V.P., Griffi th, M.T., Hanson, M.A., Cherezov, V., Chien, E.Y., Lane, J.R., Ijzerman, A.P., and Stevens, R.C. (2008). The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322, 1211-1217 .10.1126/science.1164772
[27] Jiang, D., Zhao, Y., Wang, X., Fan, J., Heng, J., Liu, X., Feng, W., Kang, X., Huang, B., Liu, J., . (2013). Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A. Proc Natl Acad Sci USA 110, 14664-14669 .10.1073/pnas.1308127110
[28] Jones, K.A., Borowsky, B., Tamm, J.A., Craig, D.A., Durkin, M.M., Dai, M., Yao, W.J., Johnson, M., Gunwaldsen, C., Huang, L.Y., . (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674-679 .10.1038/25348
[29] Katritch, V., Cherezov, V., and Stevens, R.C. (2013). Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53, 531-556 .10.1146/annurev-pharmtox-032112-135923
[30] Krishnakumar, S.S., and London, E. (2007). The control of transmembrane helix transverse position in membranes by hydrophilic residues. J Mol Biol 374, 1251-1269 .10.1016/j.jmb.2007.10.032
[31] Kruse, A.C., Hu, J., Pan, A.C., Arlow, D.H., Rosenbaum, D.M., Rose-mond, E., Green, H.F., Liu, T., Chae, P.S., Dror, R.O., . (2012). Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482, 552-556 .10.1038/nature10867
[32] Lebon, G., Warne, T., Edwards, P.C., Bennett, K., Langmead, C.J., Leslie, A.G., and Tate, C.G. (2011). gonist-bound adenosine A(2A) receptor structures reveal common features of GPCR activation. Nature 474, 521-525 .10.1038/nature10136
[33] Lebon, G., Warne, T., and Tate, C.G. (2012). Agonist-bound structures of G protein-coupled receptors. Curr Opin Struct Biol 22, 482-490 .10.1016/j.sbi.2012.03.007
[34] Li, B., Nowak, N.M., Kim, S.K., Jacobson, K.A., Bagheri, A., Schmidt, C., and Wess, J. (2005). Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identifi cation of secondsite mutations that restore function to a coupling-defi cient mutant M3 receptor. J Biol Chem 280, 5664-5675 .
[35] Liu, W., Chun, E., Thompson, A.A., Chubukov, P., Xu, F., Katritch, V., Han, G.W., Roth, C.B., Heitman, L.H., AP, I.J., . (2012). Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337, 232-236 .10.1126/science.1219218
[36] Lohse, M.J., Hoffmann, C., Nikolaev, V.O., Vilardaga, J.P., and Buneman n, M. (2007). Kinetic analysis of G protein-coupled receptor signaling using fluorescence resonance energy transfer in living cells. Adv Protein Chem 74, 167-188 .10.1016/S0065-3233(07)74005-6
[37] Lohse, M.J., Nikolaev, V.O., Hein, P., Hoffmann, C., Vilardaga, J.P., and Buneman n, M. (2008). Optical techniques to analyze real-time activation and signaling of G-protein-coupled receptors. Trends Pharmacol Sci 29, 159-165 .10.1016/j.tips.2007.12.002
[38] Madathil, S., and Fahmy, K. (2009). Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G protein-coupled receptors. J Biol Chem 284, 28801-28809 .10.1074/jbc.M109.002030
[39] Mahalingam, M., Martinez-Mayorga, K., Brown, M.F., and Vogel, R. (2008). Two protonation switches control rhodopsin activation in membranes. Proc Natl Acad Sci USA 105, 17795-17800 .10.1073/pnas.0804541105
[40] Mahaut-Smith, M.P., Martinez-Pinna, J., and Gurung, I.S. (2008). A role for membrane potential in regulating GPCRs? Trends Pharmacol Sci 29, 421-429 .10.1016/j.tips.2008.05.007
[41] Manallack, D.T. (2008). The pK(a) distribution of drugs: application to drug discovery. Perspect Medicin C hem 1, 25-38 .
[42] Manglik, A., Kruse, A.C., Kobilka, T.S., Thian, F.S., Mathiesen, J.M., Sunahara, R.K., Pardo, L., Weis, W.I., Kobilka, B.K., and Granier, S. (2012). Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485, 321-326 .10.1038/nature10954
[43] Marie, J., Maigret, B., Joseph, M.P., Larguier, R., Nouet, S., Lombard, C., and Bonnafous, J.C. (1994). Tyr292 in the seventh transmembrane domain of the AT1A angiotensin II receptor is essential for its coupling to phospholipase C. J Biol Chem 269, 20815-20818 .
[44] Martin, S., Botto, J.M., Vincent, J.P., and Mazella, J. (1999). Pivotal role of an aspartate residue in sodium sensitivity and coupling to G proteins of neurotensin receptors. Mol Pharmacol 55, 210-215 .
[45] Matthews, R.G., Hubbard, R., Brown, P.K., and Wal d, G. (1963). Tautomeric Forms of Metarhodopsin. J Gen Physiol 47, 215-240 .10.1085/jgp.47.2.215
[46] Miura, S., Kiya, Y., Hanzawa, H., Nakao, N., Fujino, M., Imaizumi, S., Matsuo, Y., Yanagisawa, H., Koike, H., Komuro, I., . (2012). Small molecules with similar structures exhibit agonist, neutral antagonist or inverse agonist activity toward angiotensin II type 1 receptor. PLoS O ne 7, e37974.
[47] Mixcoha, E., Garcia-Viloca, M., Lluch, J.M., and Gonzalez-Lafon t, A. (2012). Theoretical analysis of the catalytic mechanism of helicobacter pylori glutam ate racemase. J Phys Chem B 116, 12406-12414 .
[48] Monnot, C., Bihoreau, C., Conchon, S., Curnow, K.M., Corvol, P., and Clauser, E. (1996). Polar residues in the transmembrane domains of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two defi cient mutants. J Biol Chem 271, 1507-1513 .
[49] Montaner, S., Kufareva, I., Abagyan, R., and Gutkind, J.S. (2013). Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 53, 331-354 .10.1146/annurev-pharmtox-010510-100608
[50] Mouritsen, O.G., and Bloom, M. (1984). Mattress model of lipid-protein interactions in membranes. Biophys J 46, 141-153 .10.1016/S0006-3495(84)84007-2
[51] Murakami, M., and Kouyama, T. (2008). Crystal structure of squid rhodopsin. Nature 453, 363-367 .10.1038/nature06925
[52] Nie, B., Stutzman, J., and Xie, A. (2005). A vibrational spectral maker for probing the hydrogen-bonding status of protonated Asp and Glu residues. Biophys J 88, 2833-2847 .10.1529/biophysj.104.047639
[53] Niedernberg, A., Tunaru, S., Blaukat, A., Ardati, A., and Kostenis, E. (2003). Sphingosine 1-phosphate and dioleoylphosphatidic acid are low affi nity agonists for the orphan receptor GPR63. Cell Signal 15, 435-446 .10.1016/S0898-6568(02)00119-5
[54] Nygaard, R., Frimurer, T.M., Holst, B., Rosenkilde, M.M., and Schwartz, T.W. (2009). Ligand binding and micro-switches in 7TM receptor structures. Trends Pharmacol Sci 30, 249-259 .10.1016/j.tips.2009.02.006
[55] Onufriev, A., Smondyrev, A., and Bashford, D. (2003). Proton affi nity changes driving unidirectional proton transport in the bacteriorhodopsin photocycle. J Mol Biol 332, 1183-1193 .10.1016/S0022-2836(03)00903-3
[56] Page, M.J., and Di Cer a, E. (2006). Role of Na+ and K+ in enzyme function. Physiol Rev 86, 1049-1092 .10.1152/physrev.00008.2006
[57] Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., . (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science 289, 739-745 .10.1126/science.289.5480.739
[58] Parent, J.L., Le Gouill, C., Rola-Pleszczynski, M., and Stankova, J. (1996). Mutation of an aspartate at position 63 in the human platelet- activating factor receptor augments binding affi nity but abolishes G-protein-coupling and inositol phosphate production. Biochem Biophys Res Commun 219, 968-975 .10.1006/bbrc.1996.0341
[59] Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W., and Ernst, O.P. (2008). Crystal structure of the ligand-free G-protein-coupled receptor opsin. Nature 454, 183-187 .10.1038/nature07063
[60] Parkes, J.H., and Liebman, P.A. (1984). Temperature and pH dependence of the metarhodopsin I-metarhodopsin II kinetics and equilibria in bovine rod disk membrane suspensions. Biochemistry 23, 5054-5061 .10.1021/bi00316a035
[61] Periole, X., Ceruso, M.A., and Mehler, E.L. (2004). Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment. Biochemistry 43, 6858-6864 .10.1021/bi049949e
[62] Proulx, C.D., Holleran, B.J., Boucard, A.A., Escher, E., Guillemette, G., and Leduc, R. (2008). Mutational analysis of the conserved Asp2.50 and ERY motif reveals signaling bias of the urotensin II receptor. Mol Pharmacol 74, 552-561 .10.1124/mol.108.045054
[63] Radu, C.G., Nijagal, A., McLaughlin, J., Wang, L., and Witte, O.N. (2005). Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci U S A 102, 1632-1637 .10.1073/pnas.0409415102
[64] Rasmussen, S.G., Choi, H.J., Fung, J.J., Pardon, E., Casarosa, P., Chae, P.S., Devree, B.T., Rosenbaum, D.M., Thian, F.S., Kobilka, T.S., . (2011a). Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469, 175-180 .10.1038/nature09648
[65] Rasmussen, S.G., DeVree, B.T., Zou, Y., Kruse, A.C., Chung, K.Y., Kobilka, T.S., Thian, F.S., Chae, P.S., Pardon, E., Calinski, D., . (2011b). Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477, 549-555 .10.1038/nature10361
[66] Ratnala, V.R., Kiihne, S.R., Buda, F., Leurs, R., de Groot, H.J., and DeGrip, W.J. (2007). Solid-state NMR evidence for a protonation switch in the binding pocket of the H1 receptor upon binding of the agonist histamine. J Am Chem Soc 129, 867-872 .10.1021/ja0652262
[67] Ringholm, A., Klovins, J., Rudzish, R., Phillips, S., Rees, J.L., and Schioth, H.B. (2004). Pharmacological characterization of loss of function mutations of the human melanocortin 1 receptor that are associated with red hair. J Invest Dermatol 123, 917-923 .10.1111/j.0022-202X.2004.23444.x
[68] Rodriguez, D., Pineiro, A., and Gutierrez-de-Teran, H. (2011). Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors. Biochemistry 50, 4194-4208 .10.1021/bi200100t
[69] Rosenbaum, D.M., Zhang, C., Lyons, J.A., Holl, R., Aragao, D., Arlow, D.H., Rasmussen, S.G., Choi, H.J., Devree, B.T., Sunahara, R.K., . (2011). Structure and function of an irreversible agonistbeta(2) adrenoceptor complex. Nature 469, 236-240 .10.1038/nature09665
[70] Roth, C.B., Hanson, M.A., and Stevens, R.C. (2008). Stabilization of the human beta2-adrenergic receptor TM4-TM3-TM5 helix interface by mutagenesis of Glu122(3.41), a critical residue in GPCR structure. J Mol Biol 376, 1305-1319 .10.1016/j.jmb.2007.12.028
[71] Scheer, A., Fanelli, F., Costa, T., De Benedetti, P.G., and Cotecchia, S. (1996). Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. EMBO J 15, 3566-3578 .
[72] Scheerer, P., Park, J.H., Hildebrand, P.W., Kim, Y.J., Krauss, N., Choe, H.W., Hofmann, K.P., and Ernst, O.P. (2008). Crystal structure of opsin in its G-protein-interacting conformation. Nature 455, 497-502 .10.1038/nature07330
[73] Schlinkmann, K.M., Honegger, A., Tureci, E., Robison, K.E., Lipovsek, D., and Pluckthun, A. (2012). Critical features for biosynthesis, stability, and functionality of a G protein-coupled receptor uncovered by all-versus-all mutations. Proc Natl Acad Sci USA 109, 9810-9815 .10.1073/pnas.1202107109
[74] Selent, J., Sanz, F., Pastor, M., and De Fabritiis, G. (2010). Induced effects of sodium ions on dopaminergic G-protein coupled receptors. PLoS Comput Biol 6, e1000884.10.1371/journal.pcbi.1000884
[75] Shenke r, A. (1995). G protein-coupled receptor structure and function: the impact of disease-causing mutations. Baillieres Clin Endocrinol Meta b 9, 427-451 .10.1016/S0950-351X(95)80519-2
[76] Shimamura, T., Hiraki, K., Takahashi, N., Hori, T., Ago, H., Masuda, K., Takio, K., Ishiguro, M., and Miyan o, M. (2008). Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region. J Biol Chem 283, 17753-17756 .10.1074/jbc.C800040200
[77] Shimamura, T., Shiroishi, M., Weyand, S., Tsujimoto, H., Winter, G., Katritch, V., Abagyan, R., Cherezov, V., Liu, W., Han, G.W., . (2011). Structure of the human histamine H1 receptor complex with doxepin. Nature 475, 65-70 .10.1038/nature10236
[78] Smith, N.J. (2012). Low affi nity GPCRs for metabolic intermediates: challenges for pharmacologists. Front Endocrinol (La usanne) 3, 1 . Spassov, V.Z., Luecke, H., Gerwert, K., and Bashford, D. (2001). pK(a) Calculations suggest storage of an excess proton in a hydrogenbonded water network in bacteriorhodopsin. J Mol Biol 312, 203-219 .
[79] Standfuss, J., Edwards, P.C., D’Antona, A., Fransen, M., Xie, G., Oprian, D.D., and Schertler, G.F. (2011). The structural basis of agonistinduced activation in constitutively active rhodopsin. Nature 471, 656-660 .10.1038/nature09795
[80] Stitham, J., Arehart, E., Gleim, S.R., Li, N., Douville, K., and Hwa, J. (2007). New insights into human prostacyclin receptor structure and function through natural and synthetic mutations of transmembrane charged residues. Br J Pharmacol 152, 513-522 .10.1038/sj.bjp.0707413
[81] Strader, C.D., Sigal, I.S., Candelore, M.R., Rands, E., Hill, W.S., and Dixon, R.A. (1988). Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem 263, 10267-10271 .
[82] Taddese, B., Simpson, L.M., Wall, I.D., Blaney, F.E., and Reynolds, C.A. (2013). Modeling active GPCR conformations. Methods Enzymo l522, 21-35 .10.1016/B978-0-12-407865-9.00002-9
[83] Thompson, A.A., Liu, W., Chun, E., Katritch, V., Wu, H., Vardy, E., Huang, X.P., Trapella, C., Guerrini, R., Calo, G., . (2012). Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485, 395-399 .10.1038/nature11085
[84] Tombola, F., Pathak, M.M., and Isacoff, E.Y. (2005). How far will you go to sense voltage? Neuron 48, 719-725 .10.1016/j.neuron.2005.11.024
[85] Van Durme, J., Horn, F., Costagliola, S., Vriend, G., and Vassart, G. (2006). GRIS: glycoprotein-hormone receptor information system. Mol Endocrinol 20, 2247-2255 .10.1210/me.2006-0020
[86] Vanni, S., Neri, M., Tavernelli, I., and Rothlisberger, U. (2010). A conserved protonation-induced switch can trigger “ionic-lock” formation in adrenergic receptors. J Mol Biol 397, 1339-1349 .10.1016/j.jmb.2010.01.060
[87] Venkatakrishnan, A.J., Deupi, X., Lebon, G., Tate, C.G., Schertler, G.F., and Babu, M.M. (2013). Molecular signatures of G-protein-coupled receptors. Nature 494, 185-194 .10.1038/nature11896
[88] Vogel, R., Mahalingam, M., Ludeke, S., Huber, T., Siebert, F., and Sakmar, T.P. (2008). Functional role of the “ionic lock”--an interhelical hydrogen-bond network in family A heptahelical receptors. J Mol Biol 380, 648-655 .10.1016/j.jmb.2008.05.022
[89] von Heijne, G. (1989). Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456-458 .10.1038/341456a0
[90] Wacker, D., Wang, C., Katritch, V., Han, G.W., Huang, X.P., Vardy, E., McCorvy, J.D., Jiang, Y., Chu, M., Siu, F.Y., . (2013). Structural features for functional selectivity at serotonin receptors. Science 340, 615-619 .10.1126/science.1232808
[91] Wang, C., Jiang, Y., Ma, J., Wu, H., Wacker, D., Katritch, V., Han, G.W., Liu, W., Huang, X.P., Vardy, E., . (2013). Structural basis for molecular recognition at serotonin receptors. Science 340, 610-614 .10.1126/science.1232807
[92] Warne, T., Moukhametzianov, R., Baker, J.G., Nehme, R., Edwards, P.C., Leslie, A.G., Schertler, G.F., and Tate, C.G. (2011). The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469, 241-244 .10.1038/nature09746
[93] Warne, T., Serrano-Vega, M.J., Baker, J.G., Moukhametzianov, R., Edwards, P.C., Henderson, R., Leslie, A.G., Tate, C.G., and Schertler, G.F. (2008). Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454, 486-491 .10.1038/nature07101
[94] White, J.F., Noinaj, N., Shibata, Y., Love, J., Kloss, B., Xu, F., Gvozdenovic-Jeremic, J., Shah, P., Shiloach, J., Tate, C.G., . (2012). Structure of the agonist-bound neurotensin receptor. Nature 490, 508-513 .10.1038/nature11558
[95] Wilson, M.H., Highfield, H.A., and Limbird, L.E. (2001). The role of a conserved inter-transmembrane domain interface in regulating alpha(2a)-adrenergic receptor conformational stability and cellsurface turnover. Mol Pharmacol 59, 929-938 .
[96] Wimley, W.C., Creamer, T.P., and White, S.H. (1996). Solvation energies of amino acid side chains and backbone in a family of hostguest pentapeptides. Biochemistry 35, 5109-5124 .10.1021/bi9600153
[97] Wu, B., Chien, E.Y., Mol, C.D., Fenalti, G., Liu, W., Katritch, V., Abagyan, R., Brooun, A., Wells, P., Bi, F.C., . (2010). Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066-1071 .10.1126/science.1194396
[98] Wu, H., Wacker, D., Mileni, M., Katritch, V., Han, G.W., Vardy, E., Liu, W., Thompson, A.A., Huang, X.P., Carroll, F.I., . (2012). Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485, 327-332 .10.1038/nature10939
[99] Xu, F., Wu, H., Katritch, V., Han, G.W., Jacobson, K.A., Gao, Z.G., Cherezov, V., and Stevens, R.C. (2011). Structure of an agonistbound human A2A adenosine receptor. Science 332, 322-327 .10.1126/science.1202793
[100] Yanagawa, M., Yamashita, T., and Shichid a, Y. (2013). Glutamate acts as a partial inverse agonist to metabotropic glutamate receptor with a single amino acid mutation in the transmembrane domain. J Biol Chem 288, 9593-9601 .10.1074/jbc.M112.437780
[101] Zhang, C., Srinivasan, Y., Arlow, D.H., Fung, J.J., Palmer, D., Zheng, Y., Green, H.F., Pandey, A., Dror, R.O., Shaw, D.E., . (2012). Highresolution crystal structure of human protease-activated receptor 1. Nature 492, 387-392 .10.1038/nature11701
[102] Zhou, W., Flanagan, C., Ballesteros, J.A., Konvicka, K., Davidson, J.S., Weinstein, H., Millar, R.P., and Sealfon, S.C. (1994). A reciprocal mutation supports helix 2 and helix 7 proximity in the gonadotropinreleasing hormone receptor. Mol Pharmacol 45, 165-170 .
AI Summary AI Mindmap
PDF(879 KB)

Accesses

Citations

Detail

Sections
Recommended

/