2025-04-25 2016, Volume 23 Issue 11

  • Select all
  • Jun Li , Ya Wang , Heng-feng Li

    Graphite oxide (GO) was prepared by the pressurized oxidation method and incorporated into polyimide (PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The results show that the as-prepared GO had good dispersion and compatibility in PI matrix due to the introduction of abundant oxygen-containing functional groups during the oxidation. The residual graphitic domains and the thermal treatment induced reduction of GO further enhanced the dielectric permittivity of the resulting GO–PI composites. The dielectric permittivity of the GO–PI composites exhibited a typical percolation behavior with a percolation threshold of 0.0347 of volume ratio and a critical exponent of 0.837. Near the percolation threshold, the dielectric permittivity of the GO–PI composite increased to 108 at 102 Hz and was 26 times that of the pure PI.

  • Yang-huan Zhang , Ze-ming Yuan , Tai Yang , Yan Qi , Shi-hai Guo , Dong-liang Zhao

    Nanocrystalline and amorphous Mg-Nd-Ni-Cu quaternary alloys with a composition of (Mg24Ni10Cu2)100-xNdx (x=0, 5, 10, 15, 20) were prepared by melt spinning technology and their structures as well as gaseous hydrogen storage characteristics were investigated. The XRD, TEM and SEM linked with EDS detections reveal that the as-spun Nd-free alloy holds an entire nanocrystalline structure but a nanocrystalline and amorphous structure for the as-spun Nd-added alloy, implying that the addition of Nd facilitates the glass forming in the Mg2Ni-type alloy. Furthermore, the degree of amorphization of the as-spun Nd-added alloy and thermal stability of the amorphous structure clearly increase with the spinning rate rising. The melt spinning ameliorates the hydriding and dehydriding kinetics of the alloys dramatically. Specially, the rising of the spinning rate from 0 (the as-cast was defined as the spinning rate of 0 m/s) to 40 m/s brings on the hydrogen absorption saturation ratio (R5a) (a ratio of the hydrogen absorption quantity in 5 min to the saturated hydrogen absorption capacity) increasing from 36.9% to 91.5% and the hydrogen desorption ratio (R10d) (a ratio of the hydrogen desorption quantity in 10 min to the saturated hydrogen absorption capacity) rising from 16.4% to 47.7% for the (x=10) alloy, respectively.

  • Xiao-li Wang , Qing-xian Hu , Kai-hong Ding , Zhong-jie Peng , Yong-cong Sun , Mu-sen Li

    In this work, a low temperature ageing process for the high coercivity Dy-doped Nd-Fe-B magnets was developed by the optimizing ageing process. The experimental results show that there is no difference in microstructures, crystal orientation, magnetic and mechanical properties between the low-temperature aged and the two-stage aged sintered Dy-doped Nd-Fe-B magnets. Because of the uneven stress distribution in the sintered Dy-doped Nd-Fe-B magnet and the high activation of Dy element, Dy atoms could diffuse into the main crystal phase and the grain boundary phases of the magnets during low-temperature ageing process, which results in the reasonable distribution of Dy element and formation of the thin and uniform grain boundary phases, which are the main reasons to improve intrinsic coercivity of the Dy-doped Nd-Fe-B magnets by the low-temperature ageing.

  • Xiao-shuo Zhu , Yu-dong Fu , Zi-feng Li , Ke Leng

    An integrated low temperature nitriding process for TC4 (Ti6Al4V) has been developed and the effect on wear resistance has been investigated. Through the process of solid solution strengthening—cold deformation—nitriding at 400 °C, the TC4 alloy is nitrided on surface and dispersion strengthened in bulk at the same time. The white nitriding layer is formed after some time of nitriding. The nitriding speed increases with the deformation degree. The construction was investigated by XRD and the nitride is Ti3N2-X. The wear test was carried out and results exhibit that the nitrided samples have better wear resistance.

  • Jian-liang Sun , Yan Peng , Chou-wu Qiu , Yong-zhen Zhang

    Because of the mixed grain and coarse grain structure, the long heat treatment cycle and large energy conservation in the heavy cylinder heat treatment process, the up ladder type and terraced type normalizing heat treatment of heavy cylinder after rolling were put forward. The microstructure and mechanical properties of 2.25Cr1Mo0.25V steel after the up ladder type normalizing, terraced type normalizing and isothermal type normalizing were studied. Experimental results show that: 1) For the grain refinement, the twice terraced type normalizing is better than the up ladder type and isothermal type normalizing, and the average grain size is 18 μm; 2) The yield strength, tensile strength and -30 °C charpy impact energy after twice terraced type normalizing are 681 MPa, 768 MPa and 181 J, respectively, and the mechanical properties are better than those of the up ladder type and isothermal type normalizing; 3) Compared with the isothermal type normalizing, the holding time of terraced type normalizing can be shortened by 30%, which greatly reduces the energy consumption.

  • Qing-hua Tian , Wen-bo Ning , Wei-jia Wang , Xiu-hong Yuan , Zhi-ming Bai

    Large scaled uniform and size-controllable magnetic submicroparticles (MSPs) were synthesized via solvothermal method with ferric chloride as iron source and sodium acetate as trapping agent. The influence of Fe3+ and NaAc contents on the size distribution of MSPs was investigated. The structural and morphological properties of the synthesized particles were studied by scanning electron microscopy (SEM), X-ray power diffraction (XRD) and vibrating sample magnetometer (VSM). The well-dispersed MSPs with size of 100-1000 nm were obtained by simply adjusting the contents of Fe3+ and NaAc. In addition, the hemolysis and cytotoxicity of Fe3O4 MSPs, and their ability to case arrest in cell life-cycles were studied. The results indicate that larger size could lead to lower hemolysis. From MTT(3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the interactions between MSPs and adhesive mouse fibroblast cell line(L929) were probed. Larger size of Fe3O4 MSPs demonstrates lower cell viability following an exposure to the cells.

  • Gui-hong Han , Duo Zhang , Yan-fang Huang , Tao Jiang

    One kind of facile coal-based direct reduction process is using hot preheated pellets for reduction in grate kiln. In this work, effects of reduction parameters on swelling index of hot preheated pellets were investigated by photographic technique under isothermal conditions. Experimental results show that swelling index of pellets is firstly increased then gradually decreased with increasing reduction time, while that is found to be an obvious decrease from 175 % to 30% with the variation of temperature from 900 °C to 1100 °C. Results of XRD combined with SEM reveal that swelling behavior of pellets is decided by structure of newly formed metal iron grains. The formation and growth of fibers iron grains promote the increase in volume. Low temperature and low CO content are favored to the formation and orientated growth of metal iron grains in the one step process.

  • Hai-bin Ji , Zhi-wei He , Sha-sha Song , Zeng-dian Zhao

    Graphite nanoplatelets were prepared by a novel magnetic-grinding method using self-made equipments. Under a variant magnetic field, magnetic needles collided at a high rotating speed and exfoliated pristine graphite into graphite nanoplatelets with high efficiency. The obtained graphite nanoplatelets are highly crystalline, and the thickness is less than 10 nm. Moreover, the surface area could reached 738.1 m2/g with a grinding time of 4 h. Silanized graphite nanoplatelets can disperse well in SG 15W-40 engine oil and serve as lubricant additive. Tribological results indicate that the friction coefficient and wear-scar of the friction pairs are lower than 76% and 41%, respectively, by adding 1.5‰ (mass fraction) of silanized graphite nanoplatelets. Notably, the functionalized graphite nanoplatelets can realize large-scale production and commercial application.

  • Yun-guo Liu , Ting-ting Li , Guang-ming Zeng , Bo-hong Zheng , Wei-hua Xu , Shao-bo Liu

    A novel adsorbent named magnetic humic acid/chitosan composite (M-HA/Cs) was synthesized by decorating humic acid/chitosan composites with Fe3O4 nanoparticles. The adsorption capacity of M-HA/Cs was 1.5 times that of MCs. The effects of solution pH, initial concentration of Pb(II) ions and adsorption temperature on Pb(II) removal were examined in a batch system and further optimized using Box-Behnken analysis. The recommended optimum conditions are initial Pb(II) concentration of 139.90 mg/L, initial pH of 4.98, and temperature of 43.97 ºC. The adsorption processes could be well described by pseudo-second-order and Elovich models. Isotherm studies reveal that the adsorption process follows Sips and Temkin models. The thermodynamic study indicats that the adsorption process is spontaneous and exothermic. The potential mechanism of Pb(II) on M-HA/Cs at pH 5 may be surface electrostatic attraction, coordination and hydrogen bonding.

  • Kan-kan Yang , Zhi-huai Liang , Cai-jun Wu

    In order to screen the genes controlling watermelon rind color and luster, the experiment was carried out with yellow watermelon skin mutants as tester and green wild type watermelon as control, and transcriptome sequencing and bioinformatics analysis were done. The results show that 34.27Gb clean data were got by transcriptome sequencing. There are 261 differentially expressed genes among Y1_vs_G1, Y2_vs_G2 and Y3_vs_G3. The pathways contenting most differentially expressed genes are plant hormone signal transduction pathway, phenylpropanoid biosynthesis pathway, photosynthesis pathway, starch and sucrose metabolism pathway. 9-cis-epoxycarotenoid dioxygenase (Cla002942), alcohol dehydrogenase (Cla004992), photosystem I reaction center subunit III, chloroplastic (precursor) (Cla009181), long-chain acyl coenzyme A synthetase (Cla017341), threonine dehydratase biosynthetic (Cla018352) candidates genes were screened out.

  • Yi-ming Guo , Bing-liang Song , Yun-guo Liu , Yu-qin Sun , Hua Li , Xiao-fei Tan , Lu-hua Jiang

    An imbedded integrating ecological entity (IIEE) was designed to combine landscaping, replenishing-water purifying and ecosystem maintaining simultaneously. With this IIEE, within 15 d experiment, simulated replenish water (SRW) with high (SRW-I) or low (SRW-II) nutrients concentration was well purified. Relative removal rates of CODCr, TP, TN, Chl-a and turbidity reached 84.87%, 84.05%, 94.76%, 188.17%, 110.93% when dealing SRW-I, and 52.62%, 90.05%, 82.44%, 166.15%, 202.99%, respectively, when dealing SRW-II. The well grew flora and fauna of IIEE benefit eco-maintaining and landscaping. Separately, the maximal root and stem length-increments of Cyperus alternifolius Linn. were 26.1 mm and 28.4 mm, while for Potamogeton crispus Linn. 18.3 mm and 25.7 mm. Mortality for both Bellamya aeruginosa and Misgurnus anguillicaudatus was both under 2.96%. The analysis of variance (ANOVA) indicated that most experimental indexes in each group performed more significantly better than those in their control. All results indicated that the IIEE is a promising technology for future urban waterscapes construction.

  • Zhi-tao Yuan , Li-xia Li , Yue-xin Han , Lei Liu , Ting Liu

    The fragmentation mechanism of low-grade hematite ore in a high pressure grinding roll (HPGR) was studied based on the characteristics of comminuted products at different specific pressure levels. The major properties included the reduction ratio, liberation, specific surface energy, and specific surface area. The results showed that the fracture of low-grade hematite ore in HPGR was an interactive dynamic process in which the interaction between coarse particles of gangue minerals and fine particles of valuable minerals was alternately continuous with increased compactness and compacting strength of materials. Within a range of 2.8–4.4 N/mm2, valuable minerals were crushed after preferentially absorbing energy, whereas gangue minerals were not completely crushed and only acted as an energy transfer medium. Within a range of 4.4–5.2 N/mm2, gangue minerals were adequately crushed after absorbing the remaining energy, whereas preferentially crushed valuable minerals acted as an energy transfer medium. Within a range of 5.2–6.0 N/mm2 range, the low-grade hematite ore was not further comminuted because of the “size effect” on the strength of materials, and the comminution effect of materials became stable.

  • Guo-jiang Dong , Zhuo-yun Yang , Jian-pei Zhao , Chang-cai Zhao , Miao-yan Cao

    Hot granule medium pressure forming (HGMF) is a technology in which heat-resistant granules are used to replace liquids or gases in existing flexible-die forming technology as pressure-transfer medium. Considering the characteristic of granule medium that seals and loads easily, the technology provides a new method to realize the hot deep-drawing forming on high strength aluminum alloy sheet. Based on the pressure-transfer performance test of granule medium and the material performance test of AA7075-T6 sheet, plastic mechanics analysis is conducted for the areas, such as the flange area, force-transfer area and free deforming area, of cylindrical parts deep-drawn by HGMF technology, and the function relation of forming pressure is obtained under the condition of nonuniform distribution of internal pressure. The comparison between theoretical result and experimental data shows that larger deviation occurs in the middle and later period of forming process, and the maximum theoretical forming force is less than the experimental value by 24.6%. The variation tendency of the theoretical thickness curve is close to the practical situation, and the theoretical value basically agrees well with experimental value in the flange area and the top area of spherical cap which is in the free deforming area.

  • Ying-nan Kan , Zhao-jun Yang , Guo-fa Li , Jia-long He , Yan-kun Wang , Hong-zhou Li

    A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools (NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo (MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in WinBUGS, and a mean time between failures (MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.

  • Tian Shi , Jian-yi Kong , Xing-dong Wang , Zhao Liu , Guo Zheng

    A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.

  • Yu Hu , Hua Wang , Zhang Ren

    This paper presents an improved design for the hypersonic reentry vehicle (HRV) by the trajectory linearization control (TLC) technology for the design of HRV. The physics-based model fails to take into account the external disturbance in the flight envelope in which the stability and control derivatives prove to be nonlinear and time-varying, which is likely in turn to increase the difficulty in keeping the stability of the attitude control system. Therefore, it is of great significance to modulate the unsteady and nonlinear characteristic features of the system parameters so as to overcome the disadvantages of the conventional TLC technology that can only be valid and efficient in the cases when there may exist any minor uncertainties. It is just for this kind of necessity that we have developed a fuzzy-neural disturbance observer (FNDO) based on the B-spline to estimate such uncertainties and disturbances concerned by establishing a new dynamic system. The simulation results gained by using the aforementioned technology and the observer show that it is just due to the innovation of the adaptive trajectory linearization control (ATLC) system. Significant improvement has been realized in the performance and the robustness of the system in addition to its fault tolerance.

  • Wei-xin Liu , Yu-jia Wang , Xing Liu , Ming-jun Zhang

    When the bi-stable stochastic resonance method was applied to enhance weak thruster fault for autonomous underwater vehicle (AUV), the enhancement performance could not satisfy the detection requirement of weak thruster fault. As for this problem, a fault feature enhancement method based on mono-stable stochastic resonance was proposed. In the method, in order to improve the enhancement performance of weak thruster fault feature, the conventional bi-stable potential function was changed to mono-stable potential function which was more suitable for aperiodic signals. Furthermore, when particle swarm optimization was adopted to adjust the parameters of mono-stable stochastic resonance system, the global convergent time would be long. An improved particle swarm optimization method was developed by changing the linear inertial weighted function as nonlinear function with cosine function, so as to reduce the global convergent time. In addition, when the conventional wavelet reconstruction method was adopted to detect the weak thruster fault, undetected fault or false alarm may occur. In order to successfully detect the weak thruster fault, a weak thruster detection method was proposed based on the integration of stochastic resonance and wavelet reconstruction. In the method, the optimal reconstruction scale was determined by comparing wavelet entropies corresponding to each decomposition scale. Finally, pool-experiments were performed on AUV with thruster fault. The effectiveness of the proposed mono-stable stochastic resonance method in enhancing fault feature and reducing the global convergent time was demonstrated in comparison with particle swarm optimization based bi-stochastic resonance method. Furthermore, the effectiveness of the proposed fault detection method was illustrated in comparison with the conventional wavelet reconstruction.

  • Fu-zhou Zhao , Bing Song , Hong-bo Shi

    There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization (WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description (SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method’s validity, it is applied to a numerical example and a Tennessee Eastman (TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy (LNS-PCA) in multi-mode process monitoring.

  • Fei Long , Chang Yang , Hui-gui Rong , Jian-fang Li

    The crowdsourcing, as a service pattern in cloud environment, usually aims at the cross-disciplinary cooperation and creating value together with customers and becomes increasingly prevalent. Software process, as a kind of software development and management strategy, is defined as a series of activities implemented by software life cycle and provides a set of rules for various phases of the software engineering to achieve the desired objectives. With the current software development cycle getting shorter, facing more frequent needs change and fierce competition, a new resource management pattern is proposed to respond to these issues agilely by introducing the crowdsourcing service to agile software development for pushing the agility of software process. Then, a user-oriented resource scheduling method is proposed for rational use of various resources in the process and maximizing the benefits of all parties. From the experimental results, the proposed pattern and resources scheduling method reduces greatly the resource of project resource manager and increases the team resource utilization rate, which greatly improves the agility of software process and delivers software products quickly in crowdsourcing pattern.

  • Yuan-chun Li , Gui-bin Ding , Bo Zhao

    A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.

  • Jin-song Yu , Wei Feng , Di-yin Tang , Hao Liu

    The online diagnosis for aircraft system has always been a difficult problem. This is due to time evolution of system change, uncertainty of sensor measurements, and real-time requirement of diagnostic inference. To address this problem, two dynamic Bayesian network (DBN) approaches are proposed. One approach prunes the DBN of system, and then uses particle filter (PF) for this pruned DBN (PDBN) to perform online diagnosis. The problem is that estimates from a PF tend to have high variance for small sample sets. Using large sample sets is computationally expensive. The other approach compiles the PDBN into a dynamic arithmetic circuit (DAC) using an offline procedure that is applied only once, and then uses this circuit to provide online diagnosis recursively. This approach leads to the most computational consumption in the offline procedure. The experimental results show that the DAC, compared with the PF for PDBN, not only provides more reliable online diagnosis, but also offers much faster inference.

  • Chao Liu , Ai-xiang Wu , Sheng-hua Yin , Xun Chen

    A laboratory leaching experiment with samples of different grades was carried out, and an analytical method of concentration of leaching solution was put forward. For each sample, respectively, by applying phase space reconstruction for time series of monitoring data, the saturated embedding dimension and the correlation dimension were obtained, and the evolution laws between neighboring points in the reconstructed phase space were revealed. With BP neural network, a prediction model of concentration of leaching solution was set up and the maximum error of which was less than 2%. The results show that there exist chaotic characteristics in leaching system, and samples of different grades have different nonlinear dynamic features; the higher the grade of sample, the smaller the correlation dimension; furthermore, the maximum Lyapunov index, energy dissipation and chaotic extent of the leaching system increase with grade of the sample; by phase space reconstruction, the subtle change features of concentration of leaching solution can be magnified and the inherent laws can be fully demonstrated. According to the laws, a prediction model of leaching cycle period has been established to provide a theoretical foundation for solution mining.

  • Abolfazl Abdollahipour , Mohammad Fatehi Marji , Alireza Yarahmadi Bafghi , Javad Gholamnejad

    The higher order displacement discontinuity method (HODDM) utilizing special crack tip elements has been used in the solution of linear elastic fracture mechanics (LEFM) problems. The paper has selected several example problems from the fracture mechanics literature (with available analytical solutions) including center slant crack in an infinite and finite body, single and double edge cracks, cracks emanating from a circular hole. The numerical values of Mode I and Mode II SIFs for these problems using HODDM are in excellent agreement with analytical results (reaching up to 0.001% deviation from their analytical results). The HODDM is also compared with the XFEM and a modified XFEM results. The results show that the HODDM needs a considerably lower computational effort (with less than 400 nodes) than the XFEM and the modified XFEM (which needs more than 10000 nodes) to reach a much higher accuracy. The proposed HODDM offers higher accuracy and lower computation effort for a wide range of problems in LEFM.

  • Ke-wei Liu , Xiao-han Li , Xi-bing Li , Zhi-hua Yao , Zong-xian Shu , Ming-hua Yuan

    A superposing principle, by suitably adding the strain waves from a number of concentrated explosive charges to approximate the waves generated by a cylindrical charge based on the strain wave of a point or small spherical explosive charge generated in rock, is used to further study the triggering time of strain gauges installed in radial direction at same distances but different positions surrounding a cylindrical explosive charge in rock. The duration of the first compression phase and peak value of strain wave, and furthermore, their differences are analyzed and some explanations are given. Besides that, the gauge orientation in which the maximum peak value occurs is also discussed. At last, the effect of velocity of detonation (V.O.D.) of a cylindrical explosive charge on the strain waves generated in the surrounding rock is taken as key research and the pattern of peak amplitude of a strain wave varies with the V.O.D. is likely to have been found.

  • Yang Zhang , Long-wei Qiu , Bao-liang Yang , Ji Li , Ye-lei Wang

    The hydrodynamic conditions present in a river delta’s formation are a highly important factor in the variation between its sedimentary regulation and characteristics. In the case of the lacustrine basin river-dominated delta, water level fluctuations and fluviation, are both important controlling factors of the sedimentary characteristics and reservoir architecture. To discuss the effects of water level fluctuation on sediment characteristics and reservoir architecture of this delta, the Fangniugou section in the east of the Songliao Basin was selected for study. Based on an outcrop investigation of the lacustrine basin river-dominated delta, combining with an analysis of the major and trace chemical elements in the sediments to determine the relative water depth, through architecture bounding surfaces and lithofacies division, sedimentary microfacies recognition and architectural element research, this work illustrated the effects of water level fluctuation on the reservoir architecture and established sedimentary models for the lacustrine basin river-dominated delta under various water level conditions. The results show that there are 8 lithofacies in the Fangniugou section. The fan delta front, which is the main object of this study, develops four sedimentary microfacies that include the underwater distributary channel, river mouth bar, sheet sand and interdistributary bay. The effects of water level fluctuation on different orders geographic architecture elements are respectively reflected in the vertical combination of the composite sand bodies, the plane combination of the single sand bodies, the particle size changes in the vertical of hyperplasia in the single sand body, the coset and lamina. In the case of the sand body development of the petroliferous basin, varying water level conditions and research locations resulted in significant variation in the distribution and combination of the sand bodies in the lacustrine basin.

  • Dong-ping Deng , Lian-heng Zhao , Liang Li

    In the limit equilibrium framework, two- and three-dimensional slope stabilities can be solved according to the overall force and moment equilibrium conditions of a sliding body. In this work, based on Mohr-Coulomb (M-C) strength criterion and the initial normal stress without considering the inter-slice (or inter-column) forces, the normal and shear stresses on the slip surface are assumed using some dimensionless variables, and these variables have the same numbers with the force and moment equilibrium equations of a sliding body to establish easily the linear equation groups for solving them. After these variables are determined, the normal stresses, shear stresses, and slope safety factor are also obtained using the stresses assumptions and M-C strength criterion. In the case of a three-dimensional slope stability analysis, three calculation methods, namely, a non-strict method, quasi-strict method, and strict method, can be obtained by satisfying different force and moment equilibrium conditions. Results of the comparison in the classic two- and three-dimensional slope examples show that the slope safety factors calculated using the current method and the other limit equilibrium methods are approximately equal to each other, indicating the feasibility of the current method; further, the following conclusions are obtained: 1) The current method better amends the initial normal and shear stresses acting on the slip surface, and has the identical results with using simplified Bishop method, Spencer method, and Morgenstern-Price (M-P) method; however, the stress curve of the current method is smoother than that obtained using the three abovementioned methods. 2) The current method is suitable for analyzing the two- and three-dimensional slope stability. 3) In the three-dimensional asymmetric sliding body, the non-strict method yields safer solutions, and the results of the quasi-strict method are relatively reasonable and close to those of the strict method, indicating that the quasi-strict method can be used to obtain a reliable slope safety factor.

  • Mohammad Vaghefi , Yaser Safarpoor , Maryam Akbari

    Spur dike is one of the river training structures. This work presented a numerical simulation of flow field and three-dimensional velocity around a T-shaped spur dike located in bend using SSIIM model. The main objective of this work is to investigate the three-dimensional velocities and streamlines at transverse and longitudinal sections and plan views around the T-shaped spur dike in different submergence ratios (0, 5%, 15%, 25% and 50%). It is concluded that by increasing the submergence ratio from 5% to 50%, the maximum of scour is reduced; the maximum of longitudinal velocity increases by 7.7% and occurs at the water surface in spur dike axis. Near the bed, the maximum of vertical velocity occurs at the end of spur wing. By analyzing the streamlines at transverse sections, the followings were deduced for different submergence ratios: different dimensions and different positions of vortices around the spur dike.

  • Han-quan Zhang , Man-man Lu , Jin-tao Fu

    Compared with natural magnetite concentrate, artificial magnetite with more lattice defects and higher activity tends to be oxidized. And the artificial magnetite pellet at the temperature of 400 °C has the oxidation degree approaching to natural magnetite concentrate pellet fired at 1000 °C. Besides, two kinds of pellets displayed quite different roasting characteristics. When preheated at the same temperature for the same period of time, natural magnetite concentrate pellet and artificial magnetite concentrate pellet need to be roasted at the temperature of 1100 °C and 1250 °C, respectively, for 25 min to reach the compressive strength of 3000 N per pellet. When roasted at the same temperature of 1200 °C, natural magnetite pellet and artificial magnetite pellet need to be roasted for 15 min and 30 min, respectively, to reach the compressive strength over 3000 N per pellet. It can be seen from the test that artificial magnetite pellet has a faster oxidation, resulting in the high porosity in the produced pellet, and it requires a roasting process at higher temperature for a longer time to reach the desired compressive strength for industrial production.

  • Yu Feng , Xiao-an Chen , Wen-tao Shan

    Heliostats are sensitive to the wind load, thus as a key indicator, the study on the static and dynamic stability bearing capacity for heliostats is very important. In this work, a numerical wind tunnel was established to calculate the wind load coefficients in various survival stow positions. In order to explore the best survival stow position for the heliostat under the strong wind, eigenvalue buckling analysis method was introduced to predict the critical wind load theoretically. Considering the impact of the nonlinearity and initial geometrical imperfection, the nonlinear post-buckling behaviors of the heliostat were investigated by load-displacement curves in the full equilibrium process. Eventually, combining B-R criterion with equivalent displacement principle the dynamic critical wind speed and load amplitude coefficient were evaluated. The results show that the determination for the best survival stow position is too hasty just by the wind load coefficients. The geometric nonlinearity has a great effect on the stability bearing capacity of the heliostat, while the effects of the material nonlinearity and initial geometrical imperfection are relatively small. And the heliostat is insensitive to the initial geometrical imperfection. In addition, the heliostat has the highest safety factor for wind-resistant performance in the stow position of 90-90 which can be taken as the best survival stow position. In this case, the extreme survival wind speeds for the static and dynamic stability are 150 m/s and 36 m/s, respectively.

  • Xiao-hui Xiong , Xi-feng Liang

    In order to consider the influence of steel pole on the measurement of wind speed sensors and determinate the installation position of wind speed sensors, the flow field around wind speed sensors was investigated. Based on the three-dimensional steady Reynolds-averaged Navier-Stokes equations and k-ε double equations turbulent model, the field flow around the wind speed sensor and the steel pole along a high-speed railway was simulated on an unstructured grid. The grid-independent validation was conducted and the accuracy of the present numerical simulation method was validated by experiments and simulations carried out by previous researchers. Results show that the steel pole has a significant influence on the measurement results of wind speed sensors. As the distance between two wind speed sensors is varied from 0.3 to 1.0 m, the impact angles are less than ±20°, it is proposed that the distance between two wind speed sensors is 0.8 m at least, and the interval between wind speed sensors and the steel pole is more than 1.0 m with the sensors located on the upstream side.

  • Wei Guo , Yi Zhang , Jia-xuan You , Jian-ming Hu , Xin Pei

    The rapid development of multimodal transportation system prompts travellers to choose multiple transportation modes, such as private vehicles or taxi, transit (subways or buses), or park-and-ride combinations for urban trips. Traffic corridor is a major scenario that supports travellers to commute from suburban residential areas to central working areas. Studying their modal choice behaviour is receiving more and more interests. On one hand, it will guide the travellers to rationally choose their most economic and beneficial mode for urban trips. On the other hand, it will help traffic operators to make more appropriate policies to enhance the share of public transit in order to alleviate the traffic congestion and produce more economic and social benefits. To analyze the travel modal choice, a generalized cost model for three typical modes is first established to evaluate each different travel alternative. Then, random utility theory (RUT) and decision field theory (DFT) are introduced to describe the decision-making process how travellers make their mode choices. Further, some important factors that may influence the modal choice behaviour are discussed as well. To test the feasibility of the proposed model, a field test in Beijing was conducted to collect the real-time data and estimate the model parameters. The improvements in the test results and analysis show new advances in the development of travel mode choice on multimodal transportation networks.

  • Jian Li , Guang-jun Gao , Xiang Zou , Wei-yuan Guan

    In order to reduce casualties and property losses in a collision accident, thin-walled structure has been extensively used as energy absorber in crashworthiness design of train. With the help of energy absorber, collision kinetic energy can be controllably dissipated by the plastic deformation of structures. A new kind of multi-cell thin-walled structure called as bitubular polygonal tubes with internal walls (BPTIW) was constructed. The crashworthiness characteristics of BPTIWs were investigated by LS-DYNA. It can be found that the BPTIW with 12 sides has the most excellent crashworthiness characteristics. Therefore, based on response surface method (RSM) and multiobjective particle optimization (MOPSO) algorithm, the BPTIW with 12 sides was selected to optimize the dimensions of cross-sectional configuration under different constraints of energy absorption (EA) and crushing peak force (CPF). The results show that the optimal designs of BPTIW12 under different constraints present excellent crashworthiness characteristics and can be used in the practical engineering.