Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators

Yuan-chun Li , Gui-bin Ding , Bo Zhao

Journal of Central South University ›› 2016, Vol. 23 ›› Issue (11) : 2917 -2925.

PDF
Journal of Central South University ›› 2016, Vol. 23 ›› Issue (11) : 2917 -2925. DOI: 10.1007/s11771-016-3355-y
Mechanical Engineering, Control Science and Information Engineering

Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators

Author information +
History +
PDF

Abstract

A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.

Keywords

constrained reconfigurable manipulators / position/force control / model decomposition / decentralized control / neural network

Cite this article

Download citation ▾
Yuan-chun Li, Gui-bin Ding, Bo Zhao. Decentralized adaptive neural network sliding mode position/force control of constrained reconfigurable manipulators. Journal of Central South University, 2016, 23(11): 2917-2925 DOI:10.1007/s11771-016-3355-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChenI M, YeoS H, ChenG. Kernal for modular robot applications-automatic modeling techniques [J]. International Journal of Robotics Research, 1999, 18(2): 225-242

[2]

YooS S, RamaS, SzewczykB, PuiJ, WY, LeeW, KimL. Endoscopic capsule robots using reconfigurable modular assembly: A pilot study [J]. International Journal of Imaging System and Technology, 2014, 24(4): 359-365

[3]

YimM, ShenW M, SalemiB, RusD, MollM, LipsonH, KlavinsE, ChirikjianG S. Modular self-reconfigurable robot systems: challenges and opportunities for the future [J]. IEEE Robotic Automation Magazine, 2007, 14(1): 43-52

[4]

HaradaK, OetomoD, SusiloE, MenciassiA, DaneyD, MerletJ P, DarioP. A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results [J]. Robotica, 2010, 28(2): 171-183

[5]

QiaoG-f, SongG-m, WangY-l, ZhangJ, WangW-guo. Autonomous network repairing of a home security system using modular self-reconfigurable robots [J]. IEEE Transactions on Consumer Electronics, 2013, 59(3): 562-570

[6]

RussoS, HaradaK, RanzaniT, ManfrediL, StefaniniC, MenciassiA, DarioP. Design of a robotic module for autonomous exploration and multimode locomotion [J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(6): 1757-1766

[7]

RoehrT M, CordesF, KirchnerF. Reconfigurable integrated multi-robot exploration system: Heterogeneous modular reconfigurable robots for space exploration [J]. Journal of Field Robotics, 2014, 31(1): 3-34

[8]

DasA N, MurthyR, PopaD O, StephanouH E. A multiscale assembly and packing system for manufacturing of complex micro-nano devices [J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(1): 160-170

[9]

VonasekV, SaskaM, WinklerL, PreucilL. High-level motion planning for CPG-driven modular robots [J]. Robotics and Autonomous Systems, 2015, 68(10): 116-128

[10]

LiuG-j, AbdulS, GoldenbergA A. Distributed control of modular and reconfigurable robot with torque sensing [J]. Robotica, 2008, 26(1): 75-84

[11]

BiglarbegianM, MelekWW, MendelJ M. Design of novel interval type-2 fuzzy controllers for modular and reconfigurable robots: theory and experiments [J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1371-1384

[12]

KasprzakW, SzynkiewiczW, ZlatanovD, ZielinskaT. A hierarchical CSP search for path planning of cooperating self-reconfigurable mobile fixtures [J]. Engineering Applications of Artificial Intelligence, 2014, 34(9): 85-98

[13]

LiZ, MelekW W, ClarkC. Decentralized robust control of robot manipulators with harmonic drive transmission and application to modular and reconfigurable serial arms [J]. Robotica, 2009, 27(2): 291-302

[14]

ZhuM-c, LiY-chun. Decentralized adaptive fuzzy sliding mode control for reconfigurable modular manipulators [J]. International Journal of Robust and Nonlinear Control, 2010, 20(4): 472-488

[15]

LeitaoP, BarbosaJ, TrentesauxD. Bio-inspired multiagent systems for reconfigurable manufacturing systems [J]. Engineering Applications of Artificial Intelligence, 2012, 25(5): 934-944

[16]

Garcia-RodriguezR, Parra-VegaV. Decentralized sliding force/position PD control of cooperative robots in operational space under Jacobian uncertainty [C]. IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton, Canada, 20053200-3206

[17]

GueaiebW, KarrayF, Al-SharhanS. A robust hybrid intelligent position/force control scheme for cooperative manipulators [J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 109-125

[18]

SadatiN, GhaffarkhahA. Decentralized position and force control of nonredundant multi-manipulator systems [C]. International Conference on Control, Automation and Systems. Seoul, Korea, 20072223-2229

[19]

HaruhisaK, SatoshiU, SatoshiI. Decentralized adaptive coordinated control of multiple robot arms without using a force sensor [J]. Automatica, 2006, 42(3): 481-488

[20]

RezaeeH, AbdollahiF. A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots [J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 347-354

[21]

WailG, FakhreddineK, SalahA. A robust hybrid intelligent position/force control scheme for cooperative manipulators [J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 109-125

[22]

ZhaoB, LiY-chun. Local joint information based active fault tolerant control for reconfigurable manipulator [J]. Nonlinear Dynamics, 2014, 77(3): 859-876

[23]

GrabbeM T, BridgesM M. Comments on “force/motion control of constrained robots using sliding mode” [J]. IEEE Transactions on Automatic Control, 1994, 39(1): 179

[24]

ZhaoB, LiY-chun. Signal reconstruction based active decentralized fault tolerant control for reconfigurable manipulators [J]. Acta Automatica Sinica, 2014, 40(9): 1942-1950

[25]

SuC-y, LeungT P, ZhouQ-jie. Force/motion control of constrained robots using sliding mode [J]. IEEE Transactions on Automation Control, 1992, 37(5): 668-672

[26]

DuY-l, LiY-chun. Decentralized active fault-tolerant control for reconfigurable manipulator with simultaneous faults [J]. Journal of Central South University (Science and Technology), 2014, 45(3): 727-733

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/