2025-04-25 2016, Volume 23 Issue 10

  • Select all
  • Li Wen , Kun Yu , Hong-jie Fang , Han-qing Xiong , Xiang Yin , Hua-long Zhu , Jia-ji Ma , Da-yue Jiang

    An investigation on electrochemical behavior of Mg-5%Pb alloy, Mg-6%Al alloy and Mg-6%Al-5%Pb alloy (mass fraction) in 3.5% NaCl (mass fraction) solution was conducted using electrochemical measurements and corroded morphology observation, in which solid solution and the as-aged state of each alloy were compared to discuss the influence mechanism of lead and aluminium on the electrochemical properties of alloys. The X-ray diffraction (XRD) analysis was performed to make microstructure characterization. The electrochemical results indicate that the corrosion of Mg-5%Pb alloy is predominated by homogeneous pitting and dissolution of PbCl2 film due to Cl ions attack, while corrosion crevice propagates along grain boundaries in solid solution of Mg-6%Al alloy and the micro galvanic corrosion also plays vital role in Mg17Al12 phase containing experimental alloys. The co-existence of lead and aluminium in magnesium alloy increases corrosion current density and electrochemical activity as well. The comparison between solid solution and the as-aged state demonstrates that Mg2Pb and Mg17Al12 somewhat increase corrosion resistance but lighten anodic polarization by facilitating corrosion product flaking off.

  • Wen-yuan He , Yi-feng Xiao , Liang Wu , Yan-fei Xu , Jin-wen Qian , Yue-hui He , Xue-jun Zheng

    Porous Al-Mg alloys with different nominal compositions were successfully fabricated via elemental powder reactive synthesis, and the phase composition, pore structure, and corrosion resistance were characterized with X-ray diffractometer, scanning electron microscope and electrochemical analyzer. The volume expansion ratio, open porosity and corrosion resistance in 3.5% (mass fraction) NaCl aqueous solution of the alloys increase at first and then decrease with the increase of Mg content. The maxima of volume expansion ratio and open porosity are 18.3% and 28.1% for the porous Al-56%Mg (mass fraction) alloy, while there is the best corrosion resistance for the porous Al-37.5% Mg (mass fraction) alloy. The pore formation mechanism can be explained by Kirkendall effect, and the corrosion resistance can be mainly affected by the phase composition for the porous Al-Mg alloys. They would be of the potential application for filtration in the chloride environment.

  • Qing-long Liu , Dong-sheng Qian , Wen-ting Wei

    Microstructural evolution of GCr15 steels with different C and Cr contents during austenitizing and quenching was studied. Thermodynamic analysis of cementite dissolution was implied to obtain the critical temperature. The coordination number x in FexCr3-xC and the volume fraction of undissolved cementite were computed according to element conservation and equilibrium phase diagram. The MS (martensite transformation temperature) was calculated by using empirical formula. The retained austenite content was calculated with further consideration of quenching temperature. The results showed that the coordination number and the undissolved cementite content were promoted by the austenitizing temperature and carbon content of the steel. Increasing Cr element reduced the coordination number.GCr15 steels with different components had nearly the same MS when austenitization at 830 °C to 860 °C. The interaction of C and Cr complicated the evolution of MS and retained austenite content. The results were in good agreement with the literature, which could guide to obtain specified retained austenite and/or carbides.

  • Wen-hui Liu , Qun Qiu , Yu-qiang Chen , Chang-ping Tang

    A unit cell including the matrix, precipitation free zone (PFZ) and grain boundary was prepared, and the crystal plasticity finite element method (CPFEM) and extended finite element method (XFEM) were used to simulate the propagation of cracks at grain boundary. Simulation results show that the crystallographic orientation of PFZ has significant influence on crack propagation, which includes the crack growth direction and crack growth velocity. The fracture strain of soft orientation is larger than that of hard orientation due to the role of reducing the stress intensity at grain boundary in intergranular brittle fracture. But in intergranular ductile fracture, the fracture strain of soft orientation may be smaller than that of hard orientation due to the roles of deformation localization.

  • Wen-liang Li , Er-fu Ni , Xin-hai Li , Hua-jun Guo

    Binary carbon mixtures, carbon black ECP 600JD (ECP) combined with vapor grown carbon fiber (VGCF) or carbon nanotube (CNT), or graphene (Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na3[AlMo6O24H6] (NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 mA·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode.

  • Jiong-hui Li , Xi-xi Miao , Xin-yi Chen , Li Lu , Yi Yang , Ya-qin Fu , Chun-hua Xiong

    An enhanced adsorption and desorption procedure of Cu(II) onto green synthesized acrylic acid grafted polytetrafluoroethylene fiber (i.e. AA-PTFE) was conducted with various chemical methods. The results show that the optimal adsorption condition is in acetic acid, sodium acetate (HAc-NaAc) buffer solution (pH=6.80) with the initial concentration of 0.2 mg/mL. The process is very fast initially and equilibrium time is 12 h with a high Cu(II) uptake of 112.26 mg/g at 298 K. Various thermodynamic parameters indicate that the adsorption process is spontaneous and endothermic in nature. In the elution test, 2 mol/L HCl solution achieves satisfactory elution rate and shows no significant decrease after 5 adsorption-desorption cycle, which indicates that AA-PTFE can be regenerated and reused, and due to which a reasonable amount of nondegradable polymer material is avoided in industrial use. Finally, PTFE, AA-PTFE fiber, and Cu(II) loaded AA-PTFE fiber were characterized with various techniques, including IR spectroscopic technique, SEM and EDS.

  • Shravan Kumar , Veomesh Rawat

    Refuse coal fines of size <500 µm was collected from a metallurgical coal preparation plant located in the eastern coalfield region of India. The coal was beneficiated using froth flotation technique to recover clean coal with ash content of about 20% with the highest possible yield. Diesel oil as collector and pine oil as frother were used. Box-Behnken statistical design was followed for analyzing the performance at varying pulp density, collector and frother dosage. Results were discussed using 2D surface plots. Response function predictions determined by the regression analysis show coefficient of correlation (R2) for yield and the ash content as 0.72 and 0.86, respectively. The highest yield of 45.79% is obtained at pulp density 10%, collector dose 2 kg/t and frother dose 1.5 kg/t. The lowest ash content of 18.9% is obtained at pulp density 10%, collector dose 1 kg/t and frother dose 1 kg/t.

  • Hoda Kahrizi , Ali Bafkar , Masumeh Farasati

    The effect of nanotechnology on cadmium and zinc removal from aqueous solution was investigated. In order to characterize micro and nano phragmites australis adsorbent, we analyzed the data via FTIR, SEM, PSA, and EDX. The effect of various parameters such as pH, contact time, amount of adsorbent and initial concentration, was investigated. The optimum pH for the removal of cadmium for micro and nano phragmites australis adsorbent was 7, and for the removal of zinc by the micro adsorbent was 7 and by nano adsorbent was 6. The equilibrium time of zinc was 90 min and for the adsorption of cadmium by micro and nano adsorbent were 90 and 30 min, respectively. The optimum dose of micro adsorbent for the removal of cadmium was 0.7 g, and the other dose for the removal of zinc and cadmium was 0.5 g. The evaluation of adsorbent’s distribution coefficient showed that the highest rates of distribution coefficient with initial concentration of 5, 10, 30, and 50 mg/L were 394.83, 587.62, 759.39 and 1101.52 L/kg, respectively, which were observed in nano adsorbent. Desorption experiments for the nano adsorbent in three cycles were done. Among kinetics models, our experimental data were more consistent with Hoo kinetic model and for isotherm models, Freundlich isotherm was more consistent. The results show that nanotechnology could increase the performance of adsorbents and enhance the efficiency of the adsorption of cadmium and zinc ions.

  • Bing-yan Jiang , Can Weng , Ming-yong Zhou , Hui Lv , Dietmar Drummer

    Thickness deposition is a crucial issue on the application of electroformed micro mold inserts. Edge concentration effect is the main source of the non-uniformity. The techniques of adopting a non-conducting shield, a secondary electrode and a movable cathode were explored to improve the thickness deposition uniformity during the nickel electroforming process. Regarding these techniques, a micro electroforming system with a movable cathode was particularly developed. The thickness variation of a 16 mm×16 mm electroformed sample decreased respectively from 150% to 35%, 12% and 18% by these three techniques. Combining these validated methods, anickelmold insert for microlens array was electroformed with satisfactory mechanical properties and high replication precision. It could be applied to the following injection molding process.

  • Lei Yang , Song Deng , Hong-xing Li

    The aim of this work is to develop a three-dimensional model of deep groove ball bearing to investigate the loaded stresses and central displacements of bearing rings. The equivalent stresses and central displacements of bearing rings are obtained based on the simulated analysis. Moreover, several parameters, such as load magnitude, raceway groove curvature radius (RGCR), thicknesses of outer and inner rings, are varied to investigate their effects on the equivalent stresses and central displacements of bearing rings. Research results provide useful guidelines for determining the design parameters.

  • Cheng-bo Guo , Dong-bo Wei , Shi-chun Di

    Electrical discharge milling (ED-milling) can be a good choice for titanium alloys machining and it was proven that its machining efficiency can be improved to compete with mechanical cutting. In order to improve energy utilization efficiency of ED-milling process, unstable arc discharge and stable arc discharge combined with normal discharge were implemented for material removal by adjusting servo control strategy. The influence of electrode rotating speed and dielectric flushing pressure on machining performance was investigated by experiments. It was found that the rotating of electrode could move the position of discharge plasma channel, and high pressure flushing could wash melted debris out the discharge gap effectively. Both electrode rotating motion and high pressure flushing are contributed to the improvement of machining efficiency.

  • Qiang Cheng , Wei-da Ren , Zhi-feng Liu , Dong-ju Chen , Pei-hua Gu

    In heavy duty machine tools, hydrostatic turntable is often used as a means for providing rotational motion and supporting workpiece, so the accuracy of turntable is crucial for part machining. In order to analyze the influence of load-indcued errors on machining accuracy, an identification model of load-induced errors based on the deformation caused by applied load of hydrostatic turntable of computerized numerical control (CNC) gantry milling heavy machine is proposed. Based on multi-body system theory and screw theory, the space machining accuracy model of heavy duty machine tool is established with consideration of identified load-induced errors. And then, the influence of load-induced errors on space machining accuracy and the roundness error of a milled hole is analyzed. The analysis results show that load-induced errors have a big influence on the roundness error of machined hole, especially when the center of the milled hole is far from that of hydrostatic turntable.

  • Yu-tan Li , Hua Zhu , Meng-gang Li , Peng Li

    A new explosion-proof walking system was designed for the coal mine rescue robot (CMRR) by optimizing the mechanical structure and control algorithm. The mechanical structure innovation lies mainly in the dual-motor drive tracked unit used, which showed high dynamic performance compared with the conventional tracked unit. The control algorithm, developed based on decision trees and neural networking, facilitates autonomous switching between “Velocity-driven Mode” and “Torquedriven Mode”. To verify the feasibility and effectiveness of the control strategy, we built a self-designed test platform and used it to debug the control program; we then made a robot prototype and conducted further experiments on single-step, ramp, and rubble terrains. The results show that the proposed walking system has excellent dynamic performance and the control strategy is very efficient, suggesting that a robot with this type of explosion-proof walking system can be successfully applied in Chinese coal mines.

  • Li-min Xia , Fen Han , Jun Wang

    A novel method based on interval temporal syntactic model was proposed to recognize human activities in video flow. The method is composed of two parts: feature extract and activities recognition. Trajectory shape descriptor, speeded up robust features (SURF) and histograms of optical flow (HOF) were proposed to represent human activities, which provide more exhaustive information to describe human activities on shape, structure and motion. In the process of recognition, a probabilistic latent semantic analysis model (PLSA) was used to recognize sample activities at the first step. Then, an interval temporal syntactic model, which combines the syntactic model with the interval algebra to model the temporal dependencies of activities explicitly, was introduced to recognize the complex activities with a time relationship. Experiments results show the effectiveness of the proposed method in comparison with other state-of-the-art methods on the public databases for the recognition of complex activities.

  • Cheng-hao Hua , Li-hua Dou , Hao Fang , Hao Fu

    To tackle the problem of simultaneous localization and mapping (SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road.

  • Bo Wang , Zhong-xi Hou , Ya-fei Lu , Xiong-feng Zhu

    Battery powered vertical takeoff and landing (VTOL) aircraft attracts more and more interests from public, while limited hover endurance hinders many prospective applications. Based on the weight models of battery, motor and electronic speed controller, the power consumption model of propeller and the constant power discharge model of battery, an efficient method to estimate the hover endurance of battery powered VTOL aircraft was presented. In order to understand the mechanism of performance improvement, the impacts of propulsion system parameters on hover endurance were analyzed by simulations, including the motor power density, the battery capacity, specific energy and Peukert coefficient. Ground experiment platform was established and validation experiments were carried out, the results of which showed a well agreement with the simulations. The estimation method and the analysis results could be used for optimization design and hover performance evaluation of battery powered VTOL aircraft.

  • P. Vijaya , G. Raju , Santosh Kumar Ray

    Several users use metasearch engines directly or indirectly to access and gather data from more than one data sources. The effectiveness of a metasearch engine is majorly determined by the quality of the results and it returns and in response to user queries. The rank aggregation methods which have been proposed until now exploits very limited set of parameters such as total number of used resources and the rankings they achieved from each individual resource. In this work, we use the neural network to merge the score computation module effectively. Initially, we give a query to different search engines and the top n list from each search engine is chosen for further processing our technique. We then merge the top n list based on unique links and we do some parameter calculations such as title based calculation, snippet based calculation, content based calculation, domain calculation, position calculation and co-occurrence calculation. We give the solutions of the calculations with user given ranking of links to the neural network to train the system. The system then rank and merge the links we obtain from different search engines for the query we give. Experimentation results reports a retrieval effectiveness of about 80%, precision of about 79% for user queries and about 72% for benchmark queries. The proposed technique also includes a response time of about 76 ms for 50 links and 144 ms for 100 links.

  • Reza Moradi , Mohammad Tabatabaei

    The Legendre orthogonal functions are employed to design the family of PID controllers for a variety of plants. In the proposed method, the PID controller and the plant model are represented with their corresponding Legendre series. Matching the first three terms of the Legendre series of the loop gain with the desired one gives the PID controller parameters. The closed loop system stability conditions in terms of the Legendre basis function pole (λ) for a wide range of systems including the first order, second order, double integrator, first order plus dead time, and first order unstable plants are obtained. For first order and double integrator plants, the closed loop system stability is preserved for all values of λ and for the other plants, an appropriate range in terms of λ is obtained. The optimum value of λ to attain a minimum integral square error performance index in the presence of the control signal constraints is achieved. The numerical simulations demonstrate the benefits of the Legendre based PID controller.

  • Mahmoud Ahmadpour , Majid Siavashi , Mohammad Hossein Doranehgard

    Streamline simulation is developed to simulate waterflooding in fractured reservoirs. Conventional reservoir simulation methods for fluid flow simulation in large and complex reservoirs are very costly and time consuming. In streamline method, transport equations are solved on one-dimensional streamlines to reduce the computation time with less memory for simulation. First, pressure equation is solved on an Eulerian grid and streamlines are traced. Defining the “time of flight”, saturation equations are mapped and solved on streamlines. Finally, the results are mapped back on Eulerian grid and the process is repeated until the simulation end time. The waterflooding process is considered in a fractured reservoir using the dual porosity model. Afterwards, a computational code is developed to solve the same problem by the IMPES method and the results of streamline simulation are compared to those of the IMPES and a commercial software. Finally, the accuracy and efficiency of streamline simulator for simulation of two-phase flow in fractured reservoirs has been proved.

  • Xin Sun , Bi-ying Lu , Tian Jin , Zhi-min Zhou

    In ultra-wideband through-wall-imaging applications, wall clutters are always much stronger than the target reflections, and they tend to persist over a long period of time. As a result, targets are obscured and not visible in the image. In this work, an antenna planes-based wall clutter mitigation method was proposed. By using two imaging procedures in different scanning planes, this method can mitigate the wall clutter in both SAR and MIMO modes. The proposed method was tested using EM numerical data via the FDTD method. The processing results show that the imaging quality is improved significantly.

  • Ning Hu , Chang-sheng Li , Li-feng Wang , Lei Hu , Xiao-jun Xu , Yun-peng Zou , Yue Hu , Chen Shen

    As an important attribute of robots, safety is involved in each link of the full life cycle of robots, including the design, manufacturing, operation and maintenance. The present study on robot safety is a systematic project. Traditionally, robot safety is defined as follows: robots should not collide with humans, or robots should not harm humans when they collide. Based on this definition of robot safety, researchers have proposed ex ante and ex post safety standards and safety strategies and used the risk index and risk level as the evaluation indexes for safety methods. A massage robot realizes its massage therapy function through applying a rhythmic force on the massage object. Therefore, the traditional definition of safety, safety strategies, and safety realization methods cannot satisfy the function and safety requirements of massage robots. Based on the descriptions of the environment of massage robots and the tasks of massage robots, the present study analyzes the safety requirements of massage robots; analyzes the potential safety dangers of massage robots using the fault tree tool; proposes an error monitoring-based intelligent safety system for massage robots through monitoring and evaluating potential safety danger states, as well as decision making based on potential safety danger states; and verifies the feasibility of the intelligent safety system through an experiment.

  • Yi-an Cui , Xiao-xiong Zhu , Zhi-xue Chen , Jia-wen Liu , Jian-xin Liu

    The self-potential method is widely used in environmental and engineering geophysics. Four intelligent optimization algorithms are adopted to design the inversion to interpret self-potential data more accurately and efficiently: simulated annealing, genetic, particle swarm optimization, and ant colony optimization. Using both noise-free and noise-added synthetic data, it is demonstrated that all four intelligent algorithms can perform self-potential data inversion effectively. During the numerical experiments, the model distribution in search space, the relative errors of model parameters, and the elapsed time are recorded to evaluate the performance of the inversion. The results indicate that all the intelligent algorithms have good precision and tolerance to noise. Particle swarm optimization has the fastest convergence during iteration because of its good balanced searching capability between global and local minimisation.

  • Meng Li , Ji-xiong Zhang , Peng Huang , Rui Gao

    The backfill-mining mass ratio is the ratio of the mass of the backfill materials in the goaf to the mass of the produced raw coal during solid backfill mining and it is regarded as a direct control index of the backfill effect in solid backfill mining. To design the backfill-mining mass ratio in a solid backfill mining panel, the backfill-mining mass ratio was defined on the basis of the basic principle of solid backfill mining. In addition, the density-stress relationship of backfill materials under compaction was obtained for five types of materials to derive a design formula for backfill-mining mass ratio. Moreover, the 6304-1 backfill panel under the large-scale dam of Ji'ning No. 3 coal mine was taken as an engineering case to design the backfill-mining mass ratio. In this way, it is found that the designed backfill-mining mass ratio is 1.22, while the mean value of the measured backfill-mining mass ratio is 1.245. Besides, the maximum roof subsidence is only 340 mm which effectively guarantees the backfill effect in the panel and control of strata movement and surface subsidence.

  • Zhi-hui Zhu , Lei Zhang , Yu Bai , Fa-xing Ding , Jing Liu , Zheng Zhou

    This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element (FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature.

  • R. Gobinath , G. P. Ganapathy , I. I. Akinwumi , S. Kovendiran , S. Hema , M. Thangaraj

    The suitability of using precipitated silica (PS) from the burning of rice husk was investigated to improve the geotechnical engineering properties of a black cotton soil. A laboratory experimental program consisting of series of specific gravity, Atterberg limits, compaction, California bearing ratio (CBR), unconfined compression and consolidation tests was conducted on the untreated and PS treated soil samples. The application of PS to the soil significantly changed its properties by reducing its plasticity and making it more workable, improving its soaked strength, and increasing its permeability and the rate at which the soil gets consolidated. An optimal PS content of 50%, which provided the highest soaked strength, is recommended for the improvement of the subgrade characteristics of the BC soil for use as a pavement layer material.

  • Zhong Zhou , Hao Yang , Xiang-can Wang , Qi-fang Zhang

    According to the stress state of the crack surface, crack rock mass can be divided into complex composite tensile-shear fracture and composite compression-shear fracture from the perspective of fracture mechanics. By studying the hydraulic fracturing effect of groundwater on rock fracture, the tangential friction force equation of hydrodynamic pressure to rock fracture is deduced. The hydraulic fracturing of hydrostatic and hydrodynamic pressure to rock fracture is investigated to derive the equation of critical pressure when the hydraulic fracturing effect occurs in the rock fracture. Then, the crack angle that is most prone to hydraulic fracturing is determined. The relationships between crack direction and both lateral pressure coefficient and friction angle of the fracture surface are analyzed. Results show that considering the joint effect of hydrodynamic and hydrostatic pressure, the critical pressure does not vary with the direction of the crack when the surrounding rock stationary lateral pressure coefficient is equal to 1.0. Under composite tensile-shear fracture, the crack parallel to the direction of the main stress is the most prone to hydraulic fracturing. Under compression-shear fracture, the hydrodynamic pressure resulting in the most dangerous crack angle varies at different lateral pressure coefficients; this pressure decreases when the friction angle of the fracture surface increases. By referring to the subway tunnel collapse case, the impact of fractured rock mass hydraulic fracturing generated by hydrostatic and hydrodynamic pressure joint action is calculated and analyzed.

  • Shu-qiong Huang , Yu Chen , Chao-yang Wang , Guo-feng Du

    The details of a research study of galvanized steel tube under web crippling were presented. A total of 48 galvanized steel square hollow sections with different boundary conditions, loading conditions, bearing lengths and web slenderness were tested. The experimental scheme, failure modes, load-displacement curves and strain intensity distribution curves were also presented. The investigation was focused on the effects of loading condition, bearing length and slenderness on web crippling ultimate capacity, initial compressive stiffness and ductility of galvanized steel tube. The results show that web crippling ultimate capacity increases linearly with the increase of the bearing length under EOF and IOF loading condition. In the end-flange and ITF loading conditions, strain intensity of the centerline of web reaches the peak and decreases progressively from central web to flanges. Finite element models were developed to numerically simulate the tests in terms of failure modes and ultimate capacity. Web crippling strength of galvanized steel tube increases linearly with the increase of the ratio of the bearing length to web thickness and decrease of web slenderness. The effect of ratio of galvanized layer thickness to web thickness on web crippling strength is small. Based on the results of the parametric study, a number of calculation formulas proposed in this work can be successfully employed as a design rule for predicting web crippling ultimate capacity of galvanized steel tube under four loading and boundary conditions.

  • Wei-han Wang , Dao-lai Cheng , Tao Liu , Ying-hao Liu

    The performance tests were conducted on oil–water heat transfer in circumferential overlap trisection helical baffle heat exchangers with incline angles of 12°, 16°, 20°, 24° and 28°, and compared with a segmental baffle heat exchanger. The results show that the shell side heat transfer coefficient ho and pressure drop Δpo both increase while the comprehensive index ho/Δpo decreases with the increase of the mass flow rate of all schemes. And the shell side heat transfer coefficient, pressure drop and the comprehensive index ho/Δpo decrease with the increase of the baffle incline angle at a certain mass flow rate. The average values of shell side heat transfer coefficient and the comprehensive index ho/Δpo of the 12° helical baffled scheme are above 50% higher than those of the segmental one correspondingly, while the pressure drop value is very close and the ratios of the average values are about 1.664 and 1.596, respectively. The shell-side Nusselt number Nuo and the comprehensive index Nuo·Euzo-1 increase with the increase of Reynolds number of the shell side axial in all schemes, and the results also demonstrate that the small incline angled helical scheme has better comprehensive performance.

  • Hua-pu Lu , Zhi-yuan Sun , Wen-cong Qu

    In order to describe the characteristics of dynamic traffic flow and improve the robustness of its multiple applications, a dynamic traffic temporal-spatial model (DTTS) is established. With consideration of the temporal correlation, spatial correlation and historical correlation, a basic DTTS model is built. And a three-stage approach is put forward for the simplification and calibration of the basic DTTS model. Through critical sections pre-selection and critical time pre-selection, the first stage reduces the variable number of the basic DTTS model. In the second stage, variable coefficient calibration is implemented based on basic model simplification and stepwise regression analysis. Aimed at dynamic noise estimation, the characteristics of noise are summarized and an extreme learning machine is presented in the third stage. A case study based on a real-world road network in Beijing, China, is carried out to test the efficiency and applicability of proposed DTTS model and the three-stage approach.

  • Jing-wen Chen , Guang-jun Gao , Chun-li Zhu

    In order to describe an investigation of the flow around high-speed train on a bridge under cross winds using detached-eddy simulation (DES), a 1/8th scale model of a three-car high-speed train and a typical bridge model are employed, Numerical wind tunnel technology based on computational fluid dynamics (CFD) is used, and the CFD models are set as stationary models. The Reynolds number of the flow, based on the inflow velocity and the height of the vehicle, is 1.9×106. The computations are conducted under three cases, train on the windward track on the bridge (WWC), train on the leeward track on the bridge (LWC) and train on the flat ground (FGC). Commercial software FLUENT is used and the mesh sensitivity research is carried out by three different grids: coarse, medium and fine. Results show that compared with FGC case, the side force coefficients of the head cars for the WWC and LWC cases increases by 14% and 29%, respectively; the coefficients of middle cars for the WWC and LWC increase by 32% and 10%, respectively; and that of the tail car increases by 45% for the WWC whereas decreases by 2% for the LWC case. The most notable thing is that the side force and the rolling moment of the head car are greater for the LWC, while the side force and the rolling moment of the middle car and the tail car are greater for the WWC. Comparing the velocity profiles at different locations, the flow is significantly influenced by the bridge-train system when the air is close to it. For the three cases (WWC, LWC and FGC), the pressure on the windward side of train is mostly positive while that of the leeward side is negative. The discrepancy of train’s aerodynamic force is due to the different surface area of positive pressure and negative pressure zone. Many vortices are born on the leeward edge of the roofs. Theses vortices develop downstream, detach and dissipate into the wake region. The eddies develop irregularly, leading to a noticeably turbulent flow at leeward side of train.