2025-04-09 2005, Volume 12 Issue 4

  • Select all
  • Shun-hua Cao , Xin-ping Lin , Jiong-yi Li , Zhan Xie , Zhi-yong Cai

    In order to reduce powder temperature to lower than 100 °C in warm compaction by changing polymer lubricant design, powder flowability, warm compacting behavior, lubricating mode as well as ultimate tensile strength after sinter-hardening and tempering were investigated systematically. By means of low temperature warm pressing and sintered hardening technique, samples with the sintered densities of 7.40 – 7.45 g/cm3 and the strengths of 950 –1 390 MPa are achieved as the early compacting pressure is 686 – 735 MPa.

  • Fei Wang , Ai-ze Li , Wei Sun , Mao-bin Yi , Zhen-hua Jiang , Shi-yong Liu , Da-ming Zhang

    A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than −20 dB. The wavelength channel spacing and the center wavelength are 0.8 nm and 1 548 nm, respectively.

  • Fa-qin Dong , Guo-wu Li , Zhi-gang Sun , Gang Shen , Qi-ming Feng , Qun-wei Dai

    The liquid ion exchange method, solid salt melt method and dry-wet circulation method were used to prepare natural porous antimicrobial materials with natural minerals, such as zeolite, spilite, palygorskite and montmorillonite, respectively. Atomic absorption spectrum and X-ray diffraction analysis were carried out to investigate the effects of Ag+, Cu2+ and Zn2+ on antimicrobial abilities of natural porous minerals, and the effect of preparation method on ion exchange capacity of antimicrobial material, respectively. The results show that for the ion exchange capacity, clay mineral is higher than fibrous mineral, i. e. both zeolite and montmorillonite are higher; the antimicrobial ability of material with Ag+ is the best; the exchange capacities of materials with Cu2+ or Zn2+ are all higher, but the antimicrobial ability of Cu2+ is better than that of Zn2+.

  • Wen Wang , De-chang Jia , Yu Zhou

    SrBi2.2 Ta2O9 (SBT) thin film with thickness of 2 µm was successfully prepared by sol-gel method, using strontium acetate semihydrate [Sr(CH3 COO)2 · 1/2H2O] and bismth subnitrate [BiO(NO3)], and tantalum ethoxide [Ta(OCH2CH3)5] as source materials, glacial acetic and ethylene glycol as solvents. The X-ray diffraction (XRD) and transmission electron microscope(TEM) results indicate that SBT layer-perovskite phase obtained has to be single phase, SBT thin film is formed after being annealed at 800 °C for for 1 min. The typical hysteresis loop of SBT thin film on Pt/Ti/SiO2/Si is obtained, and the measured polarization value of the SBT thin film is 4. 2 µ/C/cm2.

  • Qi-quan Lin , Da-shu Peng , Yuan-zhi Zhu

    An isothermal compressive experiment using Gleeble 1500 thermal simulator was studied to acquire flow stress at different deformation temperatures, strains and strain rates. The artificial neural networks with the error back propagation(BP) algorithm was used to establish constitutive model of 2519 aluminum alloy based on the experiment data. The model results show that the systematical error is small(δ=3.3%) when the value of objective function is 0.2, the number of nodes in the hidden layer is 5 and the learning rate is 0.1. Flow stresses of the material under various thermodynamic conditions are predicted by the neural network model, and the predicted results correspond with the experimental results. A knowledge-based constitutive relation model is developed.

  • Hai-chuan Wang , Yuan-chi Dong , Wen-ming Zhang , Shi-jun Wang , Yun Zhou

    The effects of acid-soluble Al content on the physical and chemical performances of high Al steels were investigated. The results show that the distribution of acid-soluble Al in steel substrate is uniform. With increasing Al content, the strength and toughness of steels decrease a little but the hardness increases. The average yield strength and tensile strength are 425 MPa and 570 MPa, respectively, and the Rockwell hardness is 89. 7. For non-Al steels the average oxidation rate is up to 0.421 mg/(cm2 · h) at 1373 K. For high Al steels, when the mass fraction of Al is less than 5%, there is a thinner gray oxidized layer on surface and the oxidation rate is high; when the mass fraction of Al is more than 8.0%, the thin, close and yellow glossing film still exists, and the average oxidation rate is only 0.016 mg/(cm2 · h).

  • Zi Chen , Qi-zheng Liu , Qing-ping Meng , Yong-hua Rong

    The structural evolution and stability of Fe100−xNix (x=10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fe90Ni10 and Fe80Ni20 consist of a single α(bcc) phase, Fe30Ni30 powders are a single γ(fcc), and for Fe65Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80Ni20 powders annealed at 680 °C exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.

  • Jing Liu , Jing-tao Han , Ding-mei Fu

    One of the key problems by diffusion-rolling bonding with small reduction for carbon steel plates is the bonding assistant coat. A bonding assistant coat used below 850 °C was developed. It contained copper as basic element and zinc as main alloy element. Other small elements and rare metals were added to decrease the melting point and to obtain a better clouding and high plasticity. Based on the theory of brazing and transient liquid diffusion welding, two carbon steel plates were rolled with small reduction by using self-made bonding assistant coat. Temperature, pressure and holding time are the main technology parameters for controlling the process of diffusion-rolling. The results show that the bonding strength is the greatest when the bonding temperature is 830 °C, holding time is 3 min and the reduction rate is 9%.

  • Qing-kui Li , Shao-kang Guan , Hui Zhonh , Jiang Li , Hai-yun Zhong

    A binder phase of TiO based cermets, a kind of imitated gold materials, was developed by adding active element Si to Fe-Cr alloy, and the related mechanisms were studied. The wettability, matching in thermodynamics and interfacial strength were investigated by the high temperature sessile drop method and element area scanning. The linear expansion coefficients of the materials were measured using TAH100 thermal analyzer. The results show that the wettability of Fe-Cr alloy on TiO are small, with a wetting angle about 90°. After adding some Si in Fe-Cr alloy, its wetting angle can be decreased to about 25°, the interfacial reactions can be prevented effectively and high interface binding can be formed. Fe-25%Cr-1.5%Si matches the thermal expansion coefficient of TiO, so it is a kind of relatively perfect binder for TiO based cermets imitated gold.

  • Yi-dong Yuan , Fu-kuan Zhang , Wan-cheng Zhou

    The C/C composite brake discs were prepared by tri-cylindrical chemical vapor deposition (CVD) process. The optimum processing parameters were as follows: deposition temperature was 830 – 930 °C, the gas-flow rates of N2 and propylene were 4.8 – 5.2 m3/h and 5.8 – 6.2 m3/h, respectively, the furnace pressure was 4.5 – 5.5 kPa and the deposition time was 200 h. The effects of processing parameters on the densified rates, thermal-physical property and mechanical performance of C/C composite brake discs were studied. The results show that density, heat conductivity, bend strength and abrasion ratio of the multi-cylindrica brake discs are 1.02 – 1.78 g/cm3, 31 W/(m · K), 114 MPa and 7 µm/s, respectively, which are approximately similar to those of the single-cyclindrical ones. The gas flow rate has no relation to the number of the cylinder and furnace loading. The utilization ratio of carbon can be improved by multi-cylinder CVD process without changing the characteristics of brake disc.

  • Yong Liu , Su-qin Liu , Shun-xing Wang

    Ni-based alloy coating on 21-4-N heat-resistant steel was prepared using CO2 laser, and the high-temperature abrasion wear was tested. The microstructure of this cladding layer and its abrasion wear behavior at high temperature by changing compositions and temperatures were investigated by means of optical microscope and scanning electron microscope. Among the three compositions of cladding layer, i. e. Ni21+20%WC+0.5%CeO2, Ni25+20%WC+0.5%CeO2 and Ni60+20%WC+0.5%CeO2, the experimental results show that Ni21+20%WC+0.5%CeO2 cladding layer is made up of finer grains, and presents the best abrasion wear behavior at high temperature. The wear pattern of laser cladding layer is mainly grain abrasion at lower temperature, and it would be changed to adhesive abrasion and oxide abrasion at higher temperature.

  • Hong-jing Wan , Hong-jun Huang , Min Zhang , Zhi-guang Li

    A systematic research on a modified method that was developed to evaluate the effectiveness of volatile corrosion inhibitor(VCI) materials was carried out. The metal specimen in size of 50 mm × 25 mm × 2 mm was level mounted on the top of a beaker by transparent adhesive tape and the assembly was placed in a constant temperature water bath and kept at approximately 40 °C to accelerate the vaporization of VCI and distilled water, which was placed at the bottom of the beaker at the same time. The experimental results show that the reproducibility of rust appearance and corrosion rate calculated by specimen’s mass loss is perfect. The outstanding characteristic of the rust appearance based on different VCI formula is discovered that is very important in studying the mechanism of VCI and the synergism of chemical reagent. The accelerated ratio is increased greatly as compared with the traditional method and the value is approximately 15 as compared with Shijiazhuang atmospheric environment corrosion test. The modified method is suitable for formula screening test and quick effectiveness evaluation of VCI materials.

  • Hua-jin Pan , Hong-jun Huang , Ling-zhen Zhang , Jian-ying Qi , Shao-kun Cao

    Gelatin — carbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 3 – 10 µm. The specific saturation magnetization σs is 130.9 A · m2/kg, coercivity Hc is 0.823 A/m, and residual magnetism r is 4.98 Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid (MRF) with composite particle reaches 70 kPa at 0.5 T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.

  • Wei-zhong Li , Wen-qing Qin , Guan-zhou Qiu , Qing-hai Dong

    The electrode process of diethyldithiocarbamate on the surface of pyrrhotite was studied using systematic electrochemical analysis, including cyclic voltammetry, chronopotentiometry and galvanostatic. Experimental results show that tetraethylthioram disulphide (TETD) is electrodeposited on pyrrhotite electrode surface in the presence of 1.0×10−4 mol/L diethyldithiocarbamate when the electrode potential is higher than 0.25 V. The electrochemical kinetics parameters of the electrode process of diethyldithiocarbamate on surface of pyrrhotite are calculated as follows: the exchange current density is 2.48 µA/cm2, and the transmission coefficient is 0.46. The electrodeposition includes two steps electrochemical reaction. The first reaction is electrochemical adsorption of diethyldithiocarbamate ion, then the adsorbed ion associates with a diethyldithiocarbamate ion from the solution and forms tetraethylthioram disulphide on the surface of pyrrhotite.

  • Xiang-qing Chen , Yue-hua Hu , Yu-hua Wang , Dao-ling Xiong

    In order to offer high grade concentrate to produce alumina by Bayer, the reverse-flotation technology of bauxite was investigated. The results show that sodium hexmetaphosphate has different depression on the flotation of diaspore and kaolinite. The recoveries of diaspore decrease markedly with the increase of the concentration of sodium hexmetaphosphate with dodecyl-amine as collector. Fourier transform infrared spectra indicate that the absorbance band 875 cm−1 of the asymmetric stretching vibration of bridge oxygen P-O-P shifts to 880 cm−1, and the 1 264 cm−1 of the asymmetric stretching vibration of the bridge PO2 shifts to 1 267 cm−1 in the diaspore’s spectra. This demonstrates that sodium hexmetaphosphate interacts through bridging PO2 groups with the Al atoms exposed on the diaspore and kaolinite surfaces to form P-O-Al bond. Adsorption measurements also testify that sodium hexmetaphosphate adsorbs easily on the surface of diaspore. The adsorption density of PO3 on the surface of diaspore is about 4.7 × 10−6 mol/m2, while that on the kaolinite is only about 3.5 × 10−7 mol/m2 when pH value is 6.

  • Jian-nan Ding , Dian-zuo Wang

    The start-up of external circulation — added internal circulation (IC) reactor was finished in 26 d, 32 d fewer than that of IC reactor. To evaluate the influence of the added external circulation on the development of granular sludge, the characteristics of the granular sludge taken from the two tested laboratory-scale reactors during start-up were studied. The results show that the added external circulation can enhance biomass granulation, accelerate granule development and improve sludge characteristics. At the end of start-up, the granular size of sludge in external circulation-added IC reactor greatly increases with a size distribution much better than that of sludge in IC reactor. The granular sludge originated from external circulation — added IC reactor contains more extracellular polymers and has a greater settling velocity than that from IC reactor. Methanogenic activity of the granular sludge from the external circulation — added IC reactor started 26 d ago reaches 358.23 mL · g−1 · d−1, 1.66 and 1.20 times as great as that of the sludge from the IC reactor started 26 d and 58 d ago respectively.

  • Ming-jian Wu , Xian-jun Sun , Yuan-hui Dai , Fang-qiu Guo , Lan-fang Huang , Yi-zeng Liang

    Gas chromatography — mass spectrometry (GC-MS) coupled with chemometric resolution upon two-dimensional data was employed to analyze the constituents of essential oils of essential oils of Angelica sinensis. Constituents in essential oils of Angelica sinensis root were identified by GC-MS with the help of subwindow factor analysis (SFA) method resolving two-dimensional original data into mass spectra and chromatograms. 76 of 97 separated constituents in essential oil of Angelica sinensis root were identified and quantified, and they account for about 91. 36% of the total content. The results show that ligustilide, butylene phthalide, 2-methoxy-4-vinylphenol, carvacrol, alloocimene,2,6,6-trimethylbicyclo-[3,1,1]hept-2-ene are the main constituents in essential oil of Angelica sinensis root.

  • Ze-qiang He , Xin-hai Li , Li-zhi Xiong , Ming-you Ma , Xian-ming Wu , Zhuo-bing Xiao , Wen-ping Liu

    A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnO2 thin films was proposed with current density of 8 mA/cm2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0.03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra, scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2 · xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 °C for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 °C for 2h has better cycle performance than that with rough surface and annealed at 150 °C for 10 h.

  • Li Zhang , Wen-mi Chen , Zhu-qing Gong , Hong-zhao Liu

    Stress corrosion cracking (SCC) and anticorrosion measures of TU42C weld-joint were studied by constant load experiments and pickling experiments. The results show that in 40% (mass fraction) NaOH solution at 110 °C, caustic SCC occurs in TU42C weld-joints at the applied potential of −1 020 mV(vs SCE) for 3 d while at the potential of −950 mV(vs SCE) for 10 d. All the cracks are intergranular. In the 10% sulfuric acid, the cracks have the most negative self-corrosion potential −432.5 mV(vs SCE) and are active to be further corroded by the acid. Because of the same corrosion behaviour as the lab weldment, preheater’s cracking in alumina factories is attributed to the combining actions of previous caustic SCC in Bayer solutions and continuous acid corrosion by pickling with the addition of RD. The following measures are effective to prevent the corrosion failure of preheater, such as post-weld heat treatment at 620 °C to relax the residual weld stress, addition of CC3 and L826 as the corrosion inhibitors to improve the pickling and cleaning by the high pressure water instead of by pickling.

  • Yun-ren Qiu , Qi-xiu Zhang , Shuai Wang

    A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of the casting solution through the holes of support layer. Felt-metal supported ferric sulfate modified PVA composite UF membranes were prepared by the innovative technology. The results show that the composite membranes are used to treat 1 000 mg/L oil/water emulsion at trans-membrane pressure from 0.25 to 0.45 MPa, the permeate flux is from 36 to 52 L/(m2 · h), and the retention of chemical oxygen demand(COD) is over 92%. The composite membrane resistance increases with the increase of trans-membrane pressure.

  • Hai-lan Yang , Yan Cai , Ye-feng Bao , Yun Zhou

    Because of the relativity among the parameters, partial least square regression (PLSR) was applied to build the model and get the regression equation. The improved algorithm simplified the calculating process greatly because of the reduction of calculation. The orthogonal design was adopted in this experiment. Every sample had strong representation, which could reduce the experimental time and obtain the overall test data. Combined with the formation problem of gas metal arc weld with big current, the auxiliary analysis technique of PLSR was discussed and the regression equation of form factors (i. e. surface width, weld penetration and weld reinforcement) to process parameters(i. e. wire feed rate, wire extension, welding speed, gas flow, welding voltage and welding current) was given. The correlativity structure among variables was analyzed and there was certain correlation between independent variables matrix X and dependent variables matrix Y. The regression analysis shows that the welding speed mainly influences the weld formation while the variation of gas flow in certain range has little influence on formation of weld. The fitting plot of regression accuracy is given. The fitting quality of regression equation is basically satisfactory.

  • Hua-ping Tang , Ya-qing Peng

    A kind of active vibration control method was presented through optimal design of driving load of multibody system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.

  • Bin Li , Hong-bo He , Yi-bing Li , Gui-lin Xiong

    Structure-based protein classification can be based on the similarities in primary, second or tertiary structures of proteins. A method using virtual-bond-angles series that transformed the protein space configuration into a sequence was used for the classification of three-dimensional structures of proteins. By transforming the main chains formed by Cα atoms of proteins into sequences, the series of virtual-bond-angles corresponding to the tertiary structure of the proteins were constructed. Then a distance-based hierarchical clustering method similar to Ward method was introduced to classify these virtual-bond-angles series of proteins. 200 files of protein structures were selected from Brookheaven protein data bank, and 11 clusters were classified.

  • Zhi-hua Xiong , Guo-hong Huang , Hui-he Shao

    In order to meet the demand of online optimal running, a novel soft sensor modeling approach based on Gaussian processes was proposed. The approach is moderately simple to implement and use without loss of performance. It is trained by optimizing the hyperparameters using the scaled conjugate gradient algorithm with the squared exponential covariance function employed. Experimental simulations show that the soft sensor modeling approach has the advantage via a real-world example in a refinery. Meanwhile, the method opens new possibilities for application of kernel methods to potential fields.

  • Zun-zhong Zhang , Lian-xing Gu , Chang-zhi Wu , Hua Wu , Ai-hua Xi , Jun-hua Tang

    The characteristics of hosted magmas and their petrogenesis based on electron microprobe determination of trace element contents in zircons were discussed. Trace element geochemistry of zircons indicates that zircons in both gabbro and quartz syenite have two-generations. Zircons of the first generations are crystallized in the magma chamber, whereas those of the second generations are formed in supercooling environment. The former is richer in Zr, but poorer in U, Th, Hf and Y. Quartz diorite porphyrite contains zircons that can be distinguished into the early and late generations. Compared to the late generation, the early generation is richer in Zr but poorer in U, Th, Hf and Y. No conspicuous disruption of zircon evolution has been found in both biotite monzogranite and fine-grained granite. However, the content of zircon in fine-grained granite is higher in U, Th and Y and lower in Zr relative to biotite monzogranite without significant contrast in mass fraction ratio of ZrO2 to HfO2 ratio. Such differences in zircon geochemistry of various intrusive phases and the occurrence of the two zircon generations within a single intrusive phase suggest that these phases of magmas are generated from diverse sources during post-collisional continental extension. These magmas ascend rapidly and cool quickly in a short interval.

  • Qian-wei Dai , De-shan Feng , Ji-shan He

    The ground penetrating radar (GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.

  • Xi-bing Li , Zi-long Zhou , Qi-yue Li , Liu-qing Hu

    In order to obtain the optimal parameters of anchor bolt supporting system for large-span and jointed rock mass in Kaiyang Phosphor Mine, it is expensive and unavailable with the method of in-situ experiments. This paper describes a numerical modeling with discrete element method for the supporting effects of different type of anchor bolts. The anchor bolts with variant length of 0.5 m, 0.8 m, 1.0 m, diameter of 10 mm, 15 mm, 20 mm, setting spacing of 3.0 m, 2.5 m, 2.0 m, and setting angle of 10°, 20°, 30°, are simulated respectively. The results show that there exist optimal parameters of anchor bolt support for large-span and jointed rock mass. For the bolt support of the concerning, the optimal length is 2.5–3.5 m, the diameter is 25–35 mm, the spacing is 0.5–0.6 m, and the setting angle is 105°.

  • Ming-hua Zhao , Ming-hui Yang , Xin-jun Zou

    The load transfer analytical method is applied to study the bearing mechanism of piles with vertical load in this paper. According to the different hardening rules of soil or rock around the pile shaft, such as work-softening, ideal elasto-plastic and work-hardening, a universal tri-linear load transfer model is suggested for the development of side and tip resistance by various types of soil (rock) with the consideration of sediment at the bottom of the pile. Based on the model, a formula is derived for the relationship between the settlement and load on the pile top to determine the vertical bearing capacity, taking into account such factors as the characteristics of the stratum, the side resistance along the shaft, and tip resistance under the pile tip. A close agreement of the calculated results with the measured data from a field test pile lends confidence to the future application of the present approach in engineering practice.

  • Zhi-wei Li , Xiao-li Ding , Jian-jun Zhu , Zheng-rong Zou

    Atmospheric effects on interferometric synthetic aperture radar(InSAR) measurements are quantitatively studied based on a tandem pair of SAR data and a month-long continuous GPS tracking data obtained at six stations. Differential atmospheric signals extracted from the SAR data for two selected areas show apparent power law characteristics. The RMS values of the signals are 2.04 and 3.66 rad respectively for the two areas. These differential delays can potentially cause in the two areas peak-to-peak deformation errors of 3.64 and 6.52 cm, respectively, at the 95% confidence level and Gaussian distribution. The respective potential peak-to-peak DEM errors are 123 and 221 m. The GPS tropospheric total zenith delays estimate indicates that a peak-to-peak error of about 7.8 cm can potentially be caused in a SAR interferogram with only 1 d interval at the 95% confidence level. The error increases to about 9.6 cm for 10 d interval. The potential peak-to-peak DEM and deformation errors estimated from GPS total zenith delay measurements are however quite similar to those estimated from InSAR data. This provides us with a useful tool to pre-estimate the potential atmospheric effects in a SAR interferogram before we order the SAR images. Nevertheless, the results reveal that even in a small area the atmospheric delays can obscure centimetre level ground displacements and introduce a few hundred meters of errors to derived DEM.