Key parameters for low temperature warm compaction of high density iron-based P/M materials

Shun-hua Cao , Xin-ping Lin , Jiong-yi Li , Zhan Xie , Zhi-yong Cai

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 359 -365.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 359 -365. DOI: 10.1007/s11771-005-0161-3
Article

Key parameters for low temperature warm compaction of high density iron-based P/M materials

Author information +
History +
PDF

Abstract

In order to reduce powder temperature to lower than 100 °C in warm compaction by changing polymer lubricant design, powder flowability, warm compacting behavior, lubricating mode as well as ultimate tensile strength after sinter-hardening and tempering were investigated systematically. By means of low temperature warm pressing and sintered hardening technique, samples with the sintered densities of 7.40 – 7.45 g/cm3 and the strengths of 950 –1 390 MPa are achieved as the early compacting pressure is 686 – 735 MPa.

Keywords

iron-based P/M materials / low temperature warm compaction / lubricating mode

Cite this article

Download citation ▾
Shun-hua Cao, Xin-ping Lin, Jiong-yi Li, Zhan Xie, Zhi-yong Cai. Key parameters for low temperature warm compaction of high density iron-based P/M materials. Journal of Central South University, 2005, 12(4): 359-365 DOI:10.1007/s11771-005-0161-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RutzH G, HanejkoF GTerryC M, NarasimnamK S. High density processing of high performance ferrous materials[A]. Advances in Powder Metallurgy & Particulate Materials [C], 1994, Princeton, MPIF: 117-124

[2]

LaurentS S T, ChagnonFTerryC M, NarasimnamK S. Key Parameters for warm compaction of high density materials[A]. Advances in Powder Metallurgy & Particulate Materials [C], 1996, Princeton, MPIF: 125-138

[3]

RutzH G, HanejkoF G, LukS H. Warm compaction offers high density at low cost[J]. Metal Powder Report, 1994, 49(9): 40-47

[4]

LiYuan-yuan, NqaiT L, XiaoZhi-yu, et al.. Study on mechanical properties of warm compacted iron-base materials[J]. Journal of Central South University of Technology, 2002, 9(3): 154-158

[5]

GuoShi-ju, LinTao. Phenomenological modeling of warm compaction and experimental verification [J]. Journal of University of Science and Technology Beijing: Metallurgy Materials (English Edition), 2000, 7(4): 292-295

[6]

LotharA M. Powder metallurgy in europe at the start of the new millennium[J]. Powder Metallurgy Industry, 2001, 11(2): 7-13(in Chinese)

[7]

CapusJ, PickeringS, WeaverA. Hoeganses offers high density at lower cost[J]. Metal Powder Report, 1994, 49(7–8): 22-24

[8]

GuoShi-ju, LinTao, LiMing-yi. Predicting equation for adjusting glass temperature of binder used for P/M warm compaction processing[J]. Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (English Edition), 1998, 5(1): 39-40

[9]

CapusJ M. Die wall lubrication aids higher density [J]. Metal Powder Report, 1998, 53(9): 28-28

[10]

ChristopheN D, AthonyG, GermanR M. Effect of lubrication mode and compaction temperature on the properties of Fe-Ni-Cu-Mo-C[J]. International Journal of Powder Metallurgy, 1998, 34(2): 29-33

[11]

LiY Y, NqaiT L, ZhangD T, et al.. Effect of die wall lubrication on warm compaction powder metallurgy[J]. Journal of Materials Processing Technology, 2002, 129(1–3): 354-358

[12]

CaoShun-hua, YiJian-hong, QuXuan-hui, et al.. Design of high density powder mixtures for warm compaction[J]. J Cent South Univ Technol, 2000, 31(6): 532-535(in Chinese)

[13]

CaoShun-hua, HuangBai-yun, QuXuan-hui, et al.. Densification mechanisms of warm compaction and powder mixture designing rules[J]. Journal of Central South University of Technology, 2000, 7(1): 4-6

[14]

CaoShun-hua, QuXuan-hui, HuangBai-yun. Densification mechanism and its applications in designing powder mixtures for warm compaction[J]. Materials for Mechanical Engineering, 2002, 26(6): 9-12(in Chinese)

[15]

ZhangShuang-yi, LiYuan-yuan. Progress of research on warm compaction and its densification mechanism[J]. Materials Science & Engineering, 1999, 17(4): 96-100(in Chinese)

[16]

TtudelY, GagnéMTerryC M, NarasimnamK S. Compaction behavior of high compressibility low alloy steel powders[A]. Advances in Powder Metallurgy & Particulate Materials[C], 1989, Princeton, MPIF: 63-73

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/