Fluorinated polymer with high thermal stability for fabrication of 32-channel arrayed waveguide grating multiplexer on silicon

Fei Wang , Ai-ze Li , Wei Sun , Mao-bin Yi , Zhen-hua Jiang , Shi-yong Liu , Da-ming Zhang

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 366 -369.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 366 -369. DOI: 10.1007/s11771-005-0162-2
Article

Fluorinated polymer with high thermal stability for fabrication of 32-channel arrayed waveguide grating multiplexer on silicon

Author information +
History +
PDF

Abstract

A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than −20 dB. The wavelength channel spacing and the center wavelength are 0.8 nm and 1 548 nm, respectively.

Keywords

wavelength division multiplexing / arrayed waveguide grating / fluorinated polymer / poly (ether ether ketone)

Cite this article

Download citation ▾
Fei Wang, Ai-ze Li, Wei Sun, Mao-bin Yi, Zhen-hua Jiang, Shi-yong Liu, Da-ming Zhang. Fluorinated polymer with high thermal stability for fabrication of 32-channel arrayed waveguide grating multiplexer on silicon. Journal of Central South University, 2005, 12(4): 366-369 DOI:10.1007/s11771-005-0162-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BoothB L. Low loss channel waveguides in polymers [J]. J Lightwave Technol, 1989, 7(10): 1445-1453

[2]

WatanabeT, InoueY, KanekoA, et al.. Polymeric arrayed-waveguide grating multiplexer with wide tuning range[J]. Electron Lett, 1997, 33(18): 1547-1548

[3]

MaH, JenA K Y, DaltonL R. Polymer-based optical waveguide: materials, processing, and devices [J]. Adv Mater, 2002, 14(19): 1339-1365

[4]

AhnJ H, LeeH J, HwangW Y, et al.. Polymeric 1×16 arrayed waveguide grating multiplexer using fluorinated poly (arylene ethers) at 1 550 nm[J]. IEICE Trans Electron, 1999, E82 - C(2): 354-356

[5]

EldadaL, ShackletteL W. Advances in polymer integrated optics[J]. IEEE J Select Topics Quantum Electron, 2000, 6(1): 54-68

[6]

ToyodaS, OobaN, KanekoA, et al.. Wideband polymer thermo-optic wavelength tunable filter with fast response for WDM systems[J]. Electron Lett, 2000, 36(7): 658-670

[7]

KangJ W, KimJ P, LeeW Y, et al.. Low-loss fluorinated poly (arylene ether sulfide) waveguides with high thermal stability[J]. J Lightwave Technol, 2001, 19(6): 872-875

[8]

WatanabeT, OobaN, HayashidaS, et al.. Polymeric optical waveguide circuits formed using silicone resin [J]. J Lightwave Technol, 1998, 16(6): 1049-1055

[9]

KobayashiJ, MatsuuraT, SasakiS, et al.. Single-mode optical waveguides fabricated from fluorinated polyimides[J]. Appl Opt, 1998, 37(6): 1032-1037

[10]

UsuiM, HikitaM, WatanabeT, et al.. Low-loss passive polymer optical waveguides with high environmental stability[J]. J Lightwave Technol, 1996, 14(10): 2338-2343

[11]

KobayashiJ, MatsuuraT, HidaY, et al.. Fluorinated polyimide waveguides with low polarization-dependent loss and their applications to thermooptic switches[J]. J Lightwave Technol, 1998, 16(6): 1024-1029

[12]

ToyodaS, OobaN, HikitaM, et al.. Propagation loss and birefringence properties around 1. 55 µm of polymeric optical waveguides fabricated with cross-linked silicone[J]. Thin Solid Film, 2000, 370: 311-314

[13]

HuW, LiuB J, ChenC H, et al.. The effect of heat treatment on thermal properties and morphological structure of poly (ether ether ketone) [J]. Polymer Preprints, 2001, 42(2): 321-321

[14]

GuoWen-bin, MaChun-sheng, ZhangDa-ming, et al.. Parameter optimization and structural design of polymer arrayed waveguide grating multiplexer [J]. Opt Commun, 2002, 201: 45-53

[15]

TakahashiH, SuzukiS, NishiI. Wavelength multiplexeer based on SiO2-Ti2O5 arrayed-waveguide grating[J]. J Lightwave Technol, 1994, 12(6): 989-995

[16]

TakadaK, YamadaH, InoueY. Origin of channel crosstalk in 100 GHz-spacing silica-based arrayed-waveguide grating multiplexer [J]. Electron Lett, 1995, 31(14): 1176-1177

[17]

SmitM K, DamC V. Phasar-based WDM-devices, principles, design and applications[J]. IEEE J Select Topics Quantum Electron, 1996, 2(5): 236-250

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/