Rheological properties of magnetorheological fluid prepared by gelatin — carbonyl iron composite particles

Hua-jin Pan , Hong-jun Huang , Ling-zhen Zhang , Jian-ying Qi , Shao-kun Cao

Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 411 -415.

PDF
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 411 -415. DOI: 10.1007/s11771-005-0173-z
Article

Rheological properties of magnetorheological fluid prepared by gelatin — carbonyl iron composite particles

Author information +
History +
PDF

Abstract

Gelatin — carbonyl iron composite particle was prepared by micro emulsion method. The analysis of scanning electron microscope(SEM) shows that the ultrafine particles are spheroids coated by gelatin, and the average sizes of particles are 3 – 10 µm. The specific saturation magnetization σs is 130.9 A · m2/kg, coercivity Hc is 0.823 A/m, and residual magnetism r is 4.98 Am2/kg for the composite particles. It is shown that the particles possess properties of soft magnetic. The yield stress of magnetorheological fluid (MRF) with composite particle reaches 70 kPa at 0.5 T magnetic induction. Magnetorheological effects are superior in lower magnetic field intensity and the subsidence stability of the MRF is excellent compared with pure carbonyl iron powder.

Keywords

micro emulsion / composite particle / gelatin / carbonyl iron / yield stress

Cite this article

Download citation ▾
Hua-jin Pan, Hong-jun Huang, Ling-zhen Zhang, Jian-ying Qi, Shao-kun Cao. Rheological properties of magnetorheological fluid prepared by gelatin — carbonyl iron composite particles. Journal of Central South University, 2005, 12(4): 411-415 DOI:10.1007/s11771-005-0173-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YanJian-hui, HuangKe-long, DaiXiao-yuan. Preparation of inorganic functional nano-materials from reverse micelle microemulsion[J]. Fine Chemical Intermediates, 2003, 33(3): 4-7(in Chinese)

[2]

NiYong-hong, GeXue-wu, XuXiang-ling, et al.. Study progress of nanometer material preparation [J]. Journal of Inorganic Mater, 2000, 15(1): 9-15(in Chinese)

[3]

SunJi-hong, ZhangYe, FanWen-hao, et al.. Solgel technique and chemical clipping of nanometer material [J]. Progress of Chemistry, 1999, 11(1): 80-85(in Chinese)

[4]

XiaHe-sheng, WangQi. Advances in polymer nanomaterials II. polymer/inorganic nanocomposites [J]. Chemical Research and Application, 2002, 14(2): 127-132(in Chinese)

[5]

YangF, OuY C, YuZ Z. Polyamide/silica nanocomposites prepared by in-situ polymerization [J]. J App Polym Sci, 1998, 69(2): 355-360

[6]

YangShi-qing, PengBin, WangHao-cai, et al.. Fabrication and rheological properties on ultrafine Co-Ni composite magnetorheological fluids [J]. Journal of Functional materials, 2001, 32(2): 142-147(in Chinese)

[7]

LinJin-gu, WangYao-ju, ZouBin-suo, et al.. Study of Fe-Co nanometer particle preparation with supersonic resolution method [J]. Journal of Chemistry Physics, 1996, 9(3): 262-265(in Chinese)

[8]

LiuCheng-lin, LiYuan-guang, ZhongJu-hua, et al.. Study of α-Fe2O3 ultrafine particle with LB membrane technology assembly [J]. Journal of Chemistry Physics, 1998, 11(2): 156-160(in Chinese)

[9]

ZhangChao-ping, DengWei, HuZhong-chao, et al.. Preparation of ultrafine Fe particles with microemulsion method [J]. Chinese Journal of Apply Chemistry, 2000, 17(3): 248-251(in Chinese)

[10]

ZhangChao-ping, DengWei, HuLin, et al.. Preparation of ultrafine Ni-Fe composite particle by microemulsion [J]. Journal of Inorganic Material, 2001, 16(3): 481-485(in Chinese)

[11]

HaramS K, MahadeshwarA R, SharadG D. Synthesis and characterization of copper sulphide nanoparticles in aqueous surfactant solutions[J]. Adsorption Science and Technology, 1998, 16(8): 667-677

[12]

ZhangYan, ZouBing-suo, XiaoLiang-zhi, et al.. Preparation and characterization of monodisperse ultrafine ferric oxide by micro emulsion method[J]. Acta Scientiakum Naturalium Universitatis Jilinensis, 1990, 20(4): 115-119(in Chinese)

[13]

ZarurA J, YingJ Y. Reverse microemulsion synthesis of nanostructure complex oxide fir catalytic combustion [J]. Nature, 2000, 403: 65-67

[14]

CoulterJ P, WeissK D, CarlsonJ D. Engineering applications of electrorheological materials[J]. Journal of Intelligent Materials Systems and Structures, 1993, 2(4): 248-259

[15]

ZhaoSu-ling, SuLiang-bi, GuanJian-guo, et al.. The Preparation and character of carbonyl iron[J]. Journal of Wuhan University of Technology, 2004, 26(2): 7-10(in Chinese)

[16]

GuanJian-guo, WangWei, GongRong-zhou, et al.. Properties of magnetorheolgical suspension for filled clusters of cobalt — phthalocyanine/iron nanoparticles[J]. Chinese Journal of Chemical Physics, 2000, 13(4): 508-512(in Chinese)

[17]

WangHua, ZhouGang-yi, FangSheng, et al.. An investigation on the shear property of MR elastomer by dynamic experiment[J]. Journal of Experimental Mechanics, 2004, 19(1): 1-5(in Chinese)

[18]

JinJun, ZhangPei-qiang, WangXiao-hua, et al.. Numeric computation on shear yield stress of magnetorheology fluids [J]. Journal of University of Science and Technology of China, 2001, 31(2): 168-173(in Chinese)

[19]

CarlsonJ DJanochaH. Magnetorheological fluid actuators[A]. Adapt ionics and Smart Structures[C], 1999, Berlin, Springer-verlag Berlin Heidelberg: 180-195

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/