Structural evolution and stability of mechanically alloyed Fe-Ni nanocrystalline
Zi Chen , Qi-zheng Liu , Qing-ping Meng , Yong-hua Rong
Journal of Central South University ›› 2005, Vol. 12 ›› Issue (4) : 389 -392.
Structural evolution and stability of mechanically alloyed Fe-Ni nanocrystalline
The structural evolution and stability of Fe100−xNix (x=10, 20, 35, 50) alloys prepared by mechanical alloying were investigated through X-ray diffraction analysis and transmission electron microscopy. The intrinsic conditions of preparation determining phase stability in nanocrystalline were clarified. After being milled for 120 h, the powders of Fe90Ni10 and Fe80Ni20 consist of a single α(bcc) phase, Fe30Ni30 powders are a single γ(fcc), and for Fe65Ni35 powders there is co-existence of α and γ phases. The as-milled Fe80Ni20 powders annealed at 680 °C exhibits the stability of high-temperature γ phase at room temperature, which is consistent with the theoretical prediction.
mechanical alloying / Fe-Ni nanocrystalline / structural evolution / phase stability / martensitic transformation
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
/
| 〈 |
|
〉 |