Understanding the mechanisms of brain functions from the angle of synchronization and complex network
Tianwei Wu, Xinhua Zhang, Zonghua Liu
Understanding the mechanisms of brain functions from the angle of synchronization and complex network
The human brain is the most complicated and fascinated system and executes various important brain functions, but its underlying mechanism is a long-standing problem. In recent years, based on the progress of complex network science, much attention has been paid to this problem and many important results have been achieved, thus it is the time to make a summary to help further studies. For this purpose, we here make a brief but comprehensive review on those results from the aspect of brain networks, i.e., from the angle of synchronization and complex network. First, we briefly discuss the main features of human brain and its cognitive functions through synchronization. Then, we discuss how to construct both the anatomical and functional brain networks, including the pathological brain networks such as epilepsy and Alzheimer’s diseases. Next, we discuss the approaches of studying brain networks. After that, we discuss the current progress of understanding the mechanisms of brain functions, including the aspects of chimera state, remote synchronization, explosive synchronization, intelligence quotient, and remote propagation. Finally, we make a brief discussion on the envision of future study.
brain functions / complex network / synchronization / chimera state / remote synchronization / explosive synchronization / intelligence quotient / remote propagation
[1] |
G. Buzsaki, Rhythms of the Brain, Oxford University Press, New York, 2006
|
[2] |
P. Bak, How Nature Works: The Science of Self-Organized Criticality, Springer, New York, 1996
CrossRef
ADS
Google scholar
|
[3] |
L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann, Self-organized criticality model for brain plasticity, Phys. Rev. Lett. 96(2), 028107 (2006)
CrossRef
ADS
Google scholar
|
[4] |
T. K. Hensch, Critical period regulation, Annu. Rev. Neurosci. 27(1), 549 (2004)
CrossRef
ADS
Google scholar
|
[5] |
L. F. Abbott and S. B. Nelson, Synaptic plasticity: Taming the beast, Nat. Neurosci. 3(S11), 1178 (2000)
CrossRef
ADS
Google scholar
|
[6] |
D. O. Hebb, The Organization of Behavior, John Wiley, New York, 1949
|
[7] |
S. J. Cooper, Hebb’s synapse and learning rule: A history and commentary, Neurosci. Biobehav. Rev. 28(8), 851 (2005)
CrossRef
ADS
Google scholar
|
[8] |
K. Bansal, J. O. Garcia, S. H. Tompson, T. Verstynen, J. M. Vettel, and S. F. Muldoon, Cognitive chimera states in human brain networks, Sci. Adv. 5(4), eaau8535 (2019)
CrossRef
ADS
Google scholar
|
[9] |
P. Fries, A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence, Trends Cogn. Sci. 9(10), 474 (2005)
CrossRef
ADS
Google scholar
|
[10] |
J. F. Hipp, A. K. Engel, and M. Siegel, Oscillatory synchronization in large-scale cortical networks predicts perception, Neuron 69(2), 387 (2011)
CrossRef
ADS
Google scholar
|
[11] |
T. J. Buschman and E. K. Miller, Top-down versus bottomup control of attention in the prefrontal and posterior parietal cortices, Science 315(5820), 1860 (2007)
CrossRef
ADS
Google scholar
|
[12] |
J. Gross, F. Schmitz, I. Schnitzler, K. Kessler, K. Shapiro, B. Hommel, and A. Schnitzler, Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans, Proc. Natl. Acad. Sci. USA 101(35), 13050 (2004)
CrossRef
ADS
Google scholar
|
[13] |
F. Crick and C. Koch, Some reflections on visual awareness, Cold Spring Harb. Symp. Quant. Biol. 55(0), 953 (1990)
CrossRef
ADS
Google scholar
|
[14] |
M. Volgushev, S. Chauvette, M. Mukovski, and I. Timofecv, Precise long-range synchronization of activity and silence in neoconical neurons during slow-wave sleep, J. Neurosci. 26(21), 5665 (2006)
CrossRef
ADS
Google scholar
|
[15] |
L. M. Ward, Synchronous neural oscillations and cognitive processes, Trends Cogn. Sci. 7(12), 553 (2003)
CrossRef
ADS
Google scholar
|
[16] |
E. Bullmore and O. Sporns, The economy of brain network organization, Nat. Rev. Neurosci. 13(5), 336 (2012)
CrossRef
ADS
Google scholar
|
[17] |
K. Bansal, J. D. Medaglia, D. S. Bassett, J. M. Vettel, and S. F. Muldoon, Data-driven brain network models differentiate variability across language tasks, PLoS Comput. Biol. 14(10), e1006487 (2018)
CrossRef
ADS
Google scholar
|
[18] |
P. Hagmann, L. Cammoun, X. Gigandet, R. Meuli, C. J. Honey, J. V. Wedeen, and O. Sporns, Mapping the structural core of human cerebral cortex, PLoS Biol. 6(7), e159 (2008)
CrossRef
ADS
Google scholar
|
[19] |
S. B. Eickhoff, B. T. T. Yeo, and S. Genon, Imaging-based parcellations of the human brain, Nat. Rev. Neurosci. 19(11), 672 (2018)
CrossRef
ADS
Google scholar
|
[20] |
C. J. Honey, O. Sporns, L. Cammoun, X. Gigandet, J. P. Thiran, R. Meuli, and P. Hagmann, Predicting human resting-state functional connectivity from structural connectivity, Proc. Natl. Acad. Sci. USA 106(6), 2035 (2009)
CrossRef
ADS
Google scholar
|
[21] |
S. Huo, C. Tian, M. Zheng, S. Guan, C. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure dynamics relationship in human brain, Natl. Sci. Rev. 8(1), nwaa125 (2021)
CrossRef
ADS
Google scholar
|
[22] |
C. J. Stam, Characterization of anatomical and functional connectivity in the brain: A complex networks perspective, Int. J. Psychophysiol. 77(3), 186 (2010)
CrossRef
ADS
Google scholar
|
[23] |
O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag, Organization, development and function of complex brain networks, Trends Cogn. Sci. 8(9), 418 (2004)
CrossRef
ADS
Google scholar
|
[24] |
V. M. Eguíluz, D. R. Chialvo, G. A. Cecchi, M. Baliki, and A. V. Apkarian, Scale-free brain functional networks, Phys. Rev. Lett. 94(1), 018102 (2005)
CrossRef
ADS
Google scholar
|
[25] |
D. S. Bassett, A. Meyer-Lindenberg, S. Achard, T. Duke, and E. Bullmore, Adaptive reconfiguration of fractal smallworld human brain functional networks, Proc. Natl. Acad. Sci. USA 103(51), 19518 (2006)
CrossRef
ADS
Google scholar
|
[26] |
A. K. Engel, P. Fries, and W. Singer, Dynamic predictions: Oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2(10), 704 (2001)
CrossRef
ADS
Google scholar
|
[27] |
F. Varela, J. P. Lachaux, E. Rodriguez, and J. Martinerie, The Brainweb: Phase Synchronization and Large-Scale Integration, Nat. Rev. Neurosci. 2(4), 229 (2001)
CrossRef
ADS
Google scholar
|
[28] |
K. E. Stephan, C. C. Hilgetag, G. A. P. C. Burns, M. A. O’Neill, M. P. Young, and R. Kotter, Computational analysis of functional connectivity between areas of primate cerebral cortex, Philos. Trans. R. Soc. Lond. B 355(1393), 111 (2000)
CrossRef
ADS
Google scholar
|
[29] |
L. M. A. Bettencourt, G. J. Stephens, M. I. Ham, and G. W. Gross, Functional structure of cortical neuronal networks grown in vitro, Phys. Rev. E 75(2), 021915 (2007)
CrossRef
ADS
Google scholar
|
[30] |
M. Guye, G. Bettus, F. Bartolomei, and P. J. Cozzone, Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks, MAGMA 23(5–6), 409 (2010)
CrossRef
ADS
Google scholar
|
[31] |
C. J. Stam, B. F. Jones, G. Nolte, M. Breakspear, and P. Scheltens, Small world networks and functional connectivity in Alzheimers disease, Cereb. Cortex 17(1), 92 (2006)
CrossRef
ADS
Google scholar
|
[32] |
M. Chavez, M. Valencia, V. Navarro, V. Latora, and J. Martinerie, Functional modularity of background activities in normal and epileptic brain networks, Phys. Rev. Lett. 104(11), 118701 (2010)
CrossRef
ADS
Google scholar
|
[33] |
M. Lynall, D. S. Bassett, R. Kerwin, P. J. McKenna, M. Kitzbichler, U. Muller, and E. Bullmore, Functional connectivity and brain networks in schizophrenia, J. Neurosci. 30(28), 9477 (2010)
CrossRef
ADS
Google scholar
|
[34] |
K. J. Friston, Functional and effective connectivity in neuroimaging: A synthesis, Hum. Brain Mapp. 2(1–2), 56 (1994)
CrossRef
ADS
Google scholar
|
[35] |
S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou, The synchronization of chaotic systems, Phys. Rep. 366(1–2), 1 (2002)
CrossRef
ADS
Google scholar
|
[36] |
A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge University Press, Cambridge, UK, 2001
CrossRef
ADS
Google scholar
|
[37] |
A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
CrossRef
ADS
Google scholar
|
[38] |
J. Fell and N. Axmacher, The role of phase synchronization in memory processes, Nat. Rev. Neurosci. 12(2), 105 (2011)
CrossRef
ADS
Google scholar
|
[39] |
P. Sauseng, W. Klimesch, M. Doppelmayr, S. Hanslmayr, M. Schabus, and W. R. Gruber, Theta coupling in the human electroencephalogram during a working memory task, Neurosci. Lett. 354(2), 123 (2004)
CrossRef
ADS
Google scholar
|
[40] |
J. Sarnthein, H. Petsche, P. Rappelsberger, G. L. Shaw, and A. von Stein, Synchronization between prefrontal and posterior association cortex during human working memory, Proc. Natl. Acad. Sci. USA 95(12), 7092 (1998)
CrossRef
ADS
Google scholar
|
[41] |
N. Axmacher, D. P. Schmitz, T. Wagner, C. E. Elger, and J. Fell, Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory, a combined intracranial EEG and functional magnetic resonance imaging study, J. Neurosci. 28(29), 7304 (2008)
CrossRef
ADS
Google scholar
|
[42] |
P. Sauseng, W. Klimesch, K. F. Heise, W. R. Gruber, E. Holz, A. A. Karim, M. Glennon, C. Gerloff, N. Birbaumer, and F. C. Hummel, Brain oscillatory substrates of visual shortterm memory capacity, Curr. Biol. 19(21), 1846 (2009)
CrossRef
ADS
Google scholar
|
[43] |
M. I. Rabinovich, A. N. Simmons, and P. Varona, Dynamical bridge between brain and mind, Trends Cogn. Sci. 19(8), 453 (2015)
CrossRef
ADS
Google scholar
|
[44] |
H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. 12(1), 1 (1972)
CrossRef
ADS
Google scholar
|
[45] |
S. F. Muldoon, F. Pasqualetti, S. Gu, M. Cieslak, S. T. Grafton, J. M. Vettel, and D. S. Bassett, Stimulation-based control of dynamic brain networks, PLoS Comput. Biol. 12(9), e1005076 (2016)
CrossRef
ADS
Google scholar
|
[46] |
F. Wendling, J. J. Bellanger, F. Bartolomei, and P. Chauvel, Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals, Biol. Cybern. 83(4), 367 (2000)
CrossRef
ADS
Google scholar
|
[47] |
C. Zhou, L. Zemanova, G. Zamora-Lopez, C. C. Hilgetag, and J. Kurths, StructureCfunction relationship in complex brain networks expressed by hierarchical synchronization, New J. Phys. 9(6), 178 (2007)
CrossRef
ADS
Google scholar
|
[48] |
O. David, L. Harrison, and K. J. Friston, Modelling eventrelated responses in the brain, Neuroimage 25(3), 756 (2005)
CrossRef
ADS
Google scholar
|
[49] |
J. M. Huntenburg, P. L. Bazin, and D. S. Margulies, Large-scale gradients in human cortical organization, Trends Cogn. Neurosci. 22, 21 (2018)
CrossRef
ADS
Google scholar
|
[50] |
T. Ito, K. R. Kulkarni, D. H. Schultz, R. D. Mill, R. H. Chen, L. I. Solomyak, and M. W. Cole, Cognitive task information is transferred between brain regions via resting-state network topology, Nat. Commun. 8(1), 1027 (2017)
CrossRef
ADS
Google scholar
|
[51] |
X. G. Wang, Synchronous patterns in complex networks, Sci. Sin. Phys. Mech. & Astron. 50, 010503 (2020)
CrossRef
ADS
Google scholar
|
[52] |
M. L. Kelly, R. A. Peters, R. K. Tisdale, and J. A. Lesku, Unihemispheric sleep in crocodilians? J. Exp. Biol. 218(20), 3175 (2015)
CrossRef
ADS
Google scholar
|
[53] |
N. C. Rattenborg, S. L. Lima, and C. J. Amlaner, Halfawake to the risk of predation, Nature 397(6718), 397 (1999)
CrossRef
ADS
Google scholar
|
[54] |
N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep, Neurosci. Biobehav. Rev. 24(8), 817 (2000)
CrossRef
ADS
Google scholar
|
[55] |
M. Tamaki, J. W. Bang, T. Watanabe, and Y. Sasaki, Night watch in one brain hemisphere during sleep associated with the first-night effect in humans, Curr. Biol. 26(9), 1190 (2016)
CrossRef
ADS
Google scholar
|
[56] |
D. M. Abrams and S. H. Strogatz, Chimera states for coupled oscillators, Phys. Rev. Lett. 93(17), 174102 (2004)
CrossRef
ADS
Google scholar
|
[57] |
M. J. Panaggio and D. M. Abrams, Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity 28(3), R67 (2015)
CrossRef
ADS
Google scholar
|
[58] |
S. Majhi, B. K. Bera, D. Ghosh, and M. Perc, Chimera states in neuronal networks: A review, Phys. Life Rev. 28, 100 (2019)
CrossRef
ADS
Google scholar
|
[59] |
Z. Wang and Z. Liu, Partial synchronization in complex networks: Chimera state, remote synchronization, and cluster synchronization, Acta Physica Sinica 69(8), 088902 (2020)
CrossRef
ADS
Google scholar
|
[60] |
Z. Wang and Z. Liu, A brief review of chimera state in empirical brain networks, Front. Physiol. 11, 724 (2020)
CrossRef
ADS
Google scholar
|
[61] |
R. Ma, J. Wang, and Z. Liu, Robust features of chimera states and the implementation of alternating chimera states, Europhys. Lett. 91(4), 40006 (2010)
CrossRef
ADS
Google scholar
|
[62] |
Y. Zhu, Z. Zheng, and J. Yang, Chimera states on complex networks, Phys. Rev. E 89(2), 022914 (2014)
CrossRef
ADS
Google scholar
|
[63] |
T. Chouzouris, I. Omelchenko, A. Zakharova, J. Hlinka, P. Jiruska, and E. Schöll, Chimera states in brain networks: Empirical neural vs. modular fractal connectivity, Chaos 28(4), 045112 (2018)
CrossRef
ADS
Google scholar
|
[64] |
R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler, All together now: Analogies between chimera state collapses and epileptic seizures, Sci. Rep. 6(1), 23000 (2016)
CrossRef
ADS
Google scholar
|
[65] |
L. Kang, C. Tian, S. Huo, and Z. Liu, A two-layered brain network model and its chimera state, Sci. Rep. 9(1), 14389 (2019)
CrossRef
ADS
Google scholar
|
[66] |
S. Huo, C. Tian, M. Zheng, S. Guan, C. S. Zhou, and Z. Liu, Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain, Natl. Sci. Rev. 8(1), nwaa125 (2021)
CrossRef
ADS
Google scholar
|
[67] |
R. Vicente, L. L. Gollo, C. R. Mirasso, I. Fischer, and G. Pipa, Dynamical relaying can yield zero time lag neuronal synchrony despite long conduction delays, Proc. Natl. Acad. Sci. USA 105(44), 17157 (2008)
CrossRef
ADS
Google scholar
|
[68] |
P. R. Roelfsema, A. K. Engel, P. Konig, and W. Singer, Visuomotor integration is associated with zero time lag synchronization among cortical areas, Nature 385(6612), 157 (1997)
CrossRef
ADS
Google scholar
|
[69] |
E. Rodriguez, N. George, J. P. Lachaux, J. Martinerie, B. Renault, and F. J. Varela, Perception’s shadow: Long-distance synchronization of human brain activity, Nature 397(6718), 430 (1999)
CrossRef
ADS
Google scholar
|
[70] |
V. Vuksanović and P. Hovel, Functional connectivity of distant cortical regions: Role of remote synchronization and symmetry in interactions, Neuroimage 97, 1 (2014)
CrossRef
ADS
Google scholar
|
[71] |
A. Bergner, M. Frasca, G. Sciuto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths, Remote synchronization in star networks, Phys. Rev. E 85(2), 026208 (2012)
CrossRef
ADS
Google scholar
|
[72] |
L. Kang, Z. Wang, S. Huo, C. Tian, and Z. Liu, Remote synchronization in human cerebral cortex network with identical oscillators, Nonlinear Dyn. 99(2), 1577 (2020)
CrossRef
ADS
Google scholar
|
[73] |
M. A. Kramer and S. S. Cash, Epilepsy as a disorder of cortical network organization, Neuroscientist 18(4), 360 (2012)
CrossRef
ADS
Google scholar
|
[74] |
M. Guye, J. Regis, M. Tamura, F. Wendling, A. Mc Gonigal, P. Chauvel, and F. Bartolomei, The role of corticothalamic coupling in human temporal lobe epilepsy, Brain 129(7), 1917 (2006)
CrossRef
ADS
Google scholar
|
[75] |
Z. Wang, C. Tian, M. Dhamala, and Z. Liu, A small change in neuronal network topology can induce explosive synchronization transition and activity propagation in the entire network, Sci. Rep. 7(1), 561 (2017)
CrossRef
ADS
Google scholar
|
[76] |
J. Gómez-Gardeñes, S. Gomez, A. Arenas, and Y. Moreno, Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett. 106(12), 128701 (2011)
CrossRef
ADS
Google scholar
|
[77] |
I. Leyva, R. Sevilla-Escoboza, J. M. Buldú, I. Sendiña- Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reátegui, and S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators, Phys. Rev. Lett. 108(16), 168702 (2012)
CrossRef
ADS
Google scholar
|
[78] |
P. Ji, T. K. D. M. Peron, P. J. Menck, F. A. Rodrigues, and J. Kurths, Cluster explosive synchronization in complex networks, Phys. Rev. Lett. 110(21), 218701 (2013)
CrossRef
ADS
Google scholar
|
[79] |
X. Zhang, X. Hu, J. Kurths, and Z. Liu, Explosive synchronization in a general complex network, Phys. Rev. E 88, 010802(R) (2013)
CrossRef
ADS
Google scholar
|
[80] |
Y. Zou, T. Pereira, M. Small, Z. Liu, and J. Kurths, Basin of attraction determines hysteresis in explosive synchronization, Phys. Rev. Lett. 112(11), 114102 (2014)
CrossRef
ADS
Google scholar
|
[81] |
X. Zhang, Y. Zou, S. Boccaletti, and Z. Liu, Explosive synchronization as a process of explosive percolation in dynamical phase space, Sci. Rep. 4(1), 5200 (2015)
CrossRef
ADS
Google scholar
|
[82] |
X. Zhang, S. Boccaletti, S. Guan, and Z. Liu, Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett. 114(3), 038701 (2015)
CrossRef
ADS
Google scholar
|
[83] |
S. Boccaletti, J. A. Almendral, S. Guan, I. Leyva, Z. Liu, I. Sendiña-Nadal, Z. Wang, and Y. Zou, Explosive transitions in complex networks structure and dynamics: Percolation and synchronization, Phys. Rep. 660, 1 (2016)
CrossRef
ADS
Google scholar
|
[84] |
M. B. Kelz, Y. Sun, J. Chen, Q. Cheng Meng, J. T. Moore, S. C. Veasey, S. Dixon, M. Thornton, H. Funato, and M. Yanagisawa, An essential role for orexins in emergence from general anesthesia, Proc. Natl. Acad. Sci. USA 105(4), 1309 (2008)
CrossRef
ADS
Google scholar
|
[85] |
E. B. Friedman, Y. Sun, J. T. Moore, H. T. Hung, Q. C. Meng, P. Perera, W. J. Joiner, S. A. Thomas, R. G. Eckenhoff, A. Sehgal, and M. B. Kelz, A conserved behavioral state barrier impedes transitions between anesthetic-induced unconsciousness and wakefulness: Evidence for neural inertia, PLoS One 5(7), e11903 (2010)
CrossRef
ADS
Google scholar
|
[86] |
W. J. Joiner, E. B. Friedman, H. T. Hung, K. Koh, M. Sowcik, A. Sehgal, and M. B. Kelz, Genetic and anatomical basis of the barrier separatingwakefulness and anesthetic-induced unresponsiveness, PLoS Genet. 9(9), e1003605 (2013)
CrossRef
ADS
Google scholar
|
[87] |
M. Kim, G. A. Mashour, S. B. Moraes, G. Vanini, V. Tarnal, E. Janke, A. G. Hudetz, and U. Lee, Functional and topological conditions for explosive synchronization develop in human brain networks with the onset of anesthetic-induced unconsciousness, Front. Comput. Neurosci. 10, 1 (2016)
CrossRef
ADS
Google scholar
|
[88] |
A. C. Neubauer and A. Fink, Intelligence and neural efficiency, Neurosci. Biobehav. Rev. 33(7), 1004 (2009)
CrossRef
ADS
Google scholar
|
[89] |
E. Genç, C. Fraenz, C. Schlüter, P. Friedrich, R. Hossiep, M. C. Voelkle, J. M. Ling, O. Güntürkün, and R. E. Jung, Diffusion markers of dendritic density and arborization in gray matter predict differences in intelligence, Nat. Commun. 9(1), 1905 (2018)
CrossRef
ADS
Google scholar
|
[90] |
Y. Chen, S. Wang, C. C. Hilgetag, and C. Zhou, Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems, PLoS Comput. Biol. 9(3), e1002937 (2013)
CrossRef
ADS
Google scholar
|
[91] |
M. Kaiser and C. Hilgetag, Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems, PLoS Comput. Biol. 2(7), e95 (2006)
CrossRef
ADS
Google scholar
|
[92] |
J. Budd, K. Kovács, A. S. Ferecskó, P. Buzás, U. T. Eysel, and Z. F. Kisvárday, Neocortical axon arbors trade-off material and conduction delay conservation, PLoS Comput. Biol. 6(3), e1000711 (2010)
CrossRef
ADS
Google scholar
|
[93] |
S. Baron-Cohen, R. C. Knickmeyer, and M. K. Belmonte, Sex differences in the brain: Implications for explaining autism, Science 310(5749), 819 (2005)
CrossRef
ADS
Google scholar
|
[94] |
I. J. Deary, L. Penke, and W. Johnson, The neuroscience of human intelligence differences, Nat. Rev. Neurosci. 11(3), 201 (2010)
CrossRef
ADS
Google scholar
|
[95] |
L. Cao and Z. Liu, How IQ depends on the running mode of brain network? Chaos 30(7), 073111 (2020)
CrossRef
ADS
Google scholar
|
[96] |
J. Wang and Z. Liu, A chain model for signal detection and transmission, Europhys. Lett. 102(1), 10003 (2013)
CrossRef
ADS
Google scholar
|
[97] |
Z. Liu, Organization network enhanced detection and transmission of phase–locking, Europhys. Lett. 100(6), 60002 (2012)
CrossRef
ADS
Google scholar
|
[98] |
Q. Shen and Z. Liu, Remote firing propagation in the neural network of C. elegans, Phys. Rev. E 103(5), 052414 (2021)
CrossRef
ADS
Google scholar
|
[99] |
Z. Wang and Z. Liu, Effect of remote signal propagation in an empirical brain network, Chaos 31(6), 063126 (2021)
CrossRef
ADS
Google scholar
|
[100] |
I. Diez, A. Erramuzpe, I. Escudero, B. Mateos, A. Cabrera, D. Marinazzo, E. J. Sanz-Arigita, S. Stramaglia, and J. M. Cortes Diaz, Information flow between resting-state networks, Brain Connect. 5(9), 554 (2015)
CrossRef
ADS
Google scholar
|
[101] |
M. R. Brier, J. B. Thomas, A. Z. Snyder, T. L. Benzinger, D. Zhang, M. E. Raichle, D. M. Holtzman, J. C. Morris, and B. M. Ances, Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression, J. Neurosci. 32(26), 8890 (2012)
CrossRef
ADS
Google scholar
|
[102] |
E. J. Sanz-Arigita, M. M. Schoonheim, J. S. Damoiseaux, S. A. R. B. Rombouts, E. Maris, F. Barkhof, P. Scheltens, and C. J. Stam, Loss of ‘small-world’ networks in Alzheimer’s disease: Graph analysis of fMRI resting-state functional connectivity, PLoS One 5(11), e13788 (2010)
CrossRef
ADS
Google scholar
|
[103] |
E. Başar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, Gamma, alpha, delta, and theta oscillations govern cognitive processes, Int. J. Psychophysiol. 39(2–3), 241 (2001)
CrossRef
ADS
Google scholar
|
[104] |
E. Bullmore and O. Sporns, Complex brain networks: Graph theoretical analysis of structural and functional systems, Nat. Rev. Neurosci. 10(3), 186 (2009)
CrossRef
ADS
Google scholar
|
[105] |
R. Wang, P. Lin, M. Liu, Y. Wu, T. Zhou, and C. Zhou, Hierarchical connectome modes and critical state jointly maximize human brain functional diversity, Phys. Rev. Lett. 123(3), 038301 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |