
Low-dimensional tellurium for electronics, optoelectronics, quantum devices and beyond
Shu Wang, Xi Gong, Jia Wei, Lena Du, Feng Wang, Shen Lai, Xiaohong Shao, Weibo Gao, Cong Wang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034401.
Low-dimensional tellurium for electronics, optoelectronics, quantum devices and beyond
Two-dimensional materials offer great potential for addressing the constraints of conventional semiconductors in the post-Moore era; however, the persuit of stable p-type two-dimensional semiconductors with high mobility remains a formidable challenge. Tellurium emerges as a noteworthy candidate for p-type two-dimensional semiconductors due to its high hole mobility, outstanding chemical stability, and polarization-dependent optoelectronic characteristics. Its anisotropic crystal structure and thickness-dependent bandgap render it particularly suitable for next-generation electronic and optoelectronic applications, with recent advancements demonstrating its exceptional performance. Furthermore, the intrinsic topological features of tellurium, such as strong spin−orbit coupling and Weyl points situated below the Fermi level, classify it as a topological semiconductor — a pioneering category of quantum materials that provides innovative avenues for merging topological physics with conventional semiconductor technologies. The remarkable synergy of mobility, stability, and intrinsic topological attributes in tellurium positions it as a transformative material for the advancement of sophisticated electronic, optoelectronic and quantum systems, among other applications.
tellurium / two-dimensional semiconductors / topological semiconductor
[1] |
S. Thomas, An industry view on two-dimensional materials in electronics, Nat. Electron. 4(12), 856 (2021)
CrossRef
ADS
Google scholar
|
[2] |
Z. Shi, R. Cao, K. Khan, A. K. Tareen, X. Liu, W. Liang, Y. Zhang, C. Ma, Z. Guo, X. Luo, and H. Zhang, Two-dimensional tellurium: Progress, challenges, and prospects, Nano-Micro Lett. 12(1), 99 (2020)
CrossRef
ADS
Google scholar
|
[3] |
S. K. Su, C. P. Chuu, M. Y. Li, C. C. Cheng, H. S. P. Wong, and L. J. Li, Layered semiconducting 2D materials for future transistor applications, Small Struct. 2(5), 2000103 (2021)
CrossRef
ADS
Google scholar
|
[4] |
T. Zhu, Y. Zhang, X. Wei, M. Jiang, and H. Xu, The rise of two-dimensional tellurium for next-generation electronics and optoelectronics, Front. Phys. (Beijing) 18(3), 33601 (2023)
CrossRef
ADS
Google scholar
|
[5] |
W. Wu, G. Qiu, Y. Wang, R. Wang, and P. Ye, Tellurene: Its physical properties, scalable nanomanufacturing, and device applications, Chem. Soc. Rev. 47(19), 7203 (2018)
CrossRef
ADS
Google scholar
|
[6] |
P. Yang, J. Zha, G. Gao, L. Zheng, H. Huang, Y. Xia, S. Xu, T. Xiong, Z. Zhang, Z. Yang, Y. Chen, D. K. Ki, J. J. Liou, W. Liao, and C. Tan, Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility, Nano-Micro Lett. 14(1), 109 (2022)
CrossRef
ADS
Google scholar
|
[7] |
Y. Liu, W. Wu, and W. A. III Goddard, Tellurium: Fast electrical and atomic transport along the weak interaction direction, J. Am. Chem. Soc. 140(2), 550 (2018)
CrossRef
ADS
Google scholar
|
[8] |
J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, and W. Ji, Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties, Sci. Bull. (Beijing) 63(3), 159 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
J. Zha, D. Dong, H. Huang, Y. Xia, J. Tong, H. Liu, H. P. Chan, J. C. Ho, C. Zhao, Y. Chai, and C. Tan, Electronics and optoelectronics based on tellurium, Adv. Mater. 36(45), 2408969 (2024)
CrossRef
ADS
Google scholar
|
[10] |
S. Deckoff-Jones, Y. Wang, H. Lin, W. Wu, and J. Hu, Tellurene: A multifunctional material for midinfrared optoelectronics, ACS Photonics 6(7), 1632 (2019)
CrossRef
ADS
Google scholar
|
[11] |
C. H. Yin, H. W. Fang, H. T. Jiang, L. Cao, S. Han, Y. Y. Lv, J. Zhou, S. H. Yao, Z. K. Liu, Y. B. Chen, and Y. F. Chen, Evolution of magnetotransport properties of Weyl semiconductor Te crystals with different Fermi energy, Phys. Rev. B 108(19), 195121 (2023)
CrossRef
ADS
Google scholar
|
[12] |
N. Zhang, G. Zhao, L. Li, P. Wang, L. Xie, B. Cheng, H. Li, Z. Lin, C. Xi, J. Ke, M. Yang, J. He, Z. Sun, Z. Wang, Z. Zhang, and C. Zeng, Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium, Proc. Natl. Acad. Sci. USA 117(21), 11337 (2020)
CrossRef
ADS
Google scholar
|
[13] |
J. Ma, B. Cheng, L. Li, Z. Fan, H. Mu, J. Lai, X. Song, D. Yang, J. Cheng, Z. Wang, C. Zeng, and D. Sun, Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect, Nat. Commun. 13(1), 5425 (2022)
CrossRef
ADS
Google scholar
|
[14] |
C. Niu, G. Qiu, Y. Wang, P. Tan, M. Wang, J. Jian, H. Wang, W. Wu, and P. D. Ye, Tunable chirality-dependent nonlinear electrical responses in 2D tellurium, Nano Lett. 23(18), 8445 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[15] |
B. Cheng, Y. Gao, Z. Zheng, S. Chen, Z. Liu, L. Zhang, Q. Zhu, H. Li, L. Li, and C. Zeng, Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium, Nat. Commun. 15(1), 5513 (2024)
CrossRef
ADS
Google scholar
|
[16] |
G. Kim, J. Bahng, J. Jeong, W. Sakong, T. Lee, D. Lee, Y. Kim, H. Rho, and S. C. Lim, Gate modulation of dissipationless nonlinear quantum geometric current in 2D Te, Nano Lett. 24(35), 10820 (2024)
CrossRef
ADS
Google scholar
|
[17] |
B. Cheng, L. Li, N. Zhang, L. Zhang, X. Li, Z. Lin, H. Li, Z. Wang, and C. Zeng, Topological field-effect transistor based on quasi-two-dimensional tellurium flakes, Phys. Rev. Appl. 17(5), 054044 (2022)
CrossRef
ADS
Google scholar
|
[18] |
W. Ma, Y. Gao, L. Shang, W. Zhou, N. Yao, L. Jiang, Q. Qiu, J. Li, Y. Shi, Z. Hu, and Z. Huang, Ultrabroadband tellurium photoelectric detector from visible to millimeter wave, Adv. Sci. (Weinh.) 9(5), 2103873 (2022)
CrossRef
ADS
Google scholar
|
[19] |
Q. Zhao, F. Gao, H. Chen, W. Gao, M. Xia, Y. Pan, H. Shi, S. Su, X. Fang, and J. Li, High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition, Mater. Horiz. 8(11), 3113 (2021)
CrossRef
ADS
Google scholar
|
[20] |
M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami, and T. Miyake, Weyl node and spin texture in trigonal tellurium and selenium, Phys. Rev. Lett. 114(20), 206401 (2015)
CrossRef
ADS
arXiv
Google scholar
|
[21] |
G. Qiu, S. Huang, M. Segovia, P. K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, and P. D. Ye, Thermoelectric performance of 2D tellurium with accumulation contacts, Nano Lett. 19(3), 1955 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
Y. Yang,M. Xu,S. Jia,B. Wang,L. Xu, X. Wang,H. Liu,Y. Liu,Y. Guo,L. Wang, S. Duan,K. Liu,M. Zhu,J. Pei,W. Duan, D. Liu,H. Li, A new opportunity for the emerging tellurium semiconductor: Making resistive switching devices, Nat. Commun. 12(1), 6081 (2021)
|
[23] |
J. He, Y. Qu, S. Chen, C. Wang, L. Du, X. Du, Y. Zheng, G. Zhao, and H. Tian, Highly sensitive flexible strain sensor based on the two-dimensional semiconductor tellurium with a negative gauge factor, Sci. China Inf. Sci. 67(7), 172401 (2024)
CrossRef
ADS
Google scholar
|
Part of a collection:
/
〈 |
|
〉 |