Low-dimensional tellurium for electronics, optoelectronics, quantum devices and beyond

Shu Wang, Xi Gong, Jia Wei, Lena Du, Feng Wang, Shen Lai, Xiaohong Shao, Weibo Gao, Cong Wang

Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034401.

PDF(8833 KB)
PDF(8833 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034401. DOI: 10.15302/frontphys.2025.034401
VIEW & PERSPECTIVE

Low-dimensional tellurium for electronics, optoelectronics, quantum devices and beyond

Author information +
History +

Abstract

Two-dimensional materials offer great potential for addressing the constraints of conventional semiconductors in the post-Moore era; however, the persuit of stable p-type two-dimensional semiconductors with high mobility remains a formidable challenge. Tellurium emerges as a noteworthy candidate for p-type two-dimensional semiconductors due to its high hole mobility, outstanding chemical stability, and polarization-dependent optoelectronic characteristics. Its anisotropic crystal structure and thickness-dependent bandgap render it particularly suitable for next-generation electronic and optoelectronic applications, with recent advancements demonstrating its exceptional performance. Furthermore, the intrinsic topological features of tellurium, such as strong spin−orbit coupling and Weyl points situated below the Fermi level, classify it as a topological semiconductor — a pioneering category of quantum materials that provides innovative avenues for merging topological physics with conventional semiconductor technologies. The remarkable synergy of mobility, stability, and intrinsic topological attributes in tellurium positions it as a transformative material for the advancement of sophisticated electronic, optoelectronic and quantum systems, among other applications.

Graphical abstract

Keywords

tellurium / two-dimensional semiconductors / topological semiconductor

Cite this article

Download citation ▾
Shu Wang, Xi Gong, Jia Wei, Lena Du, Feng Wang, Shen Lai, Xiaohong Shao, Weibo Gao, Cong Wang. Low-dimensional tellurium for electronics, optoelectronics, quantum devices and beyond. Front. Phys., 2025, 20(3): 034401 https://doi.org/10.15302/frontphys.2025.034401

References

[1]
S. Thomas, An industry view on two-dimensional materials in electronics, Nat. Electron. 4(12), 856 (2021)
CrossRef ADS Google scholar
[2]
Z. Shi, R. Cao, K. Khan, A. K. Tareen, X. Liu, W. Liang, Y. Zhang, C. Ma, Z. Guo, X. Luo, and H. Zhang, Two-dimensional tellurium: Progress, challenges, and prospects, Nano-Micro Lett. 12(1), 99 (2020)
CrossRef ADS Google scholar
[3]
S. K. Su, C. P. Chuu, M. Y. Li, C. C. Cheng, H. S. P. Wong, and L. J. Li, Layered semiconducting 2D materials for future transistor applications, Small Struct. 2(5), 2000103 (2021)
CrossRef ADS Google scholar
[4]
T. Zhu, Y. Zhang, X. Wei, M. Jiang, and H. Xu, The rise of two-dimensional tellurium for next-generation electronics and optoelectronics, Front. Phys. (Beijing) 18(3), 33601 (2023)
CrossRef ADS Google scholar
[5]
W. Wu, G. Qiu, Y. Wang, R. Wang, and P. Ye, Tellurene: Its physical properties, scalable nanomanufacturing, and device applications, Chem. Soc. Rev. 47(19), 7203 (2018)
CrossRef ADS Google scholar
[6]
P. Yang, J. Zha, G. Gao, L. Zheng, H. Huang, Y. Xia, S. Xu, T. Xiong, Z. Zhang, Z. Yang, Y. Chen, D. K. Ki, J. J. Liou, W. Liao, and C. Tan, Growth of tellurium nanobelts on h-BN for p-type transistors with ultrahigh hole mobility, Nano-Micro Lett. 14(1), 109 (2022)
CrossRef ADS Google scholar
[7]
Y. Liu, W. Wu, and W. A. III Goddard, Tellurium: Fast electrical and atomic transport along the weak interaction direction, J. Am. Chem. Soc. 140(2), 550 (2018)
CrossRef ADS Google scholar
[8]
J. Qiao, Y. Pan, F. Yang, C. Wang, Y. Chai, and W. Ji, Few-layer tellurium: One-dimensional-like layered elementary semiconductor with striking physical properties, Sci. Bull. (Beijing) 63(3), 159 (2018)
CrossRef ADS arXiv Google scholar
[9]
J. Zha, D. Dong, H. Huang, Y. Xia, J. Tong, H. Liu, H. P. Chan, J. C. Ho, C. Zhao, Y. Chai, and C. Tan, Electronics and optoelectronics based on tellurium, Adv. Mater. 36(45), 2408969 (2024)
CrossRef ADS Google scholar
[10]
S. Deckoff-Jones, Y. Wang, H. Lin, W. Wu, and J. Hu, Tellurene: A multifunctional material for midinfrared optoelectronics, ACS Photonics 6(7), 1632 (2019)
CrossRef ADS Google scholar
[11]
C. H. Yin, H. W. Fang, H. T. Jiang, L. Cao, S. Han, Y. Y. Lv, J. Zhou, S. H. Yao, Z. K. Liu, Y. B. Chen, and Y. F. Chen, Evolution of magnetotransport properties of Weyl semiconductor Te crystals with different Fermi energy, Phys. Rev. B 108(19), 195121 (2023)
CrossRef ADS Google scholar
[12]
N. Zhang, G. Zhao, L. Li, P. Wang, L. Xie, B. Cheng, H. Li, Z. Lin, C. Xi, J. Ke, M. Yang, J. He, Z. Sun, Z. Wang, Z. Zhang, and C. Zeng, Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium, Proc. Natl. Acad. Sci. USA 117(21), 11337 (2020)
CrossRef ADS Google scholar
[13]
J. Ma, B. Cheng, L. Li, Z. Fan, H. Mu, J. Lai, X. Song, D. Yang, J. Cheng, Z. Wang, C. Zeng, and D. Sun, Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect, Nat. Commun. 13(1), 5425 (2022)
CrossRef ADS Google scholar
[14]
C. Niu, G. Qiu, Y. Wang, P. Tan, M. Wang, J. Jian, H. Wang, W. Wu, and P. D. Ye, Tunable chirality-dependent nonlinear electrical responses in 2D tellurium, Nano Lett. 23(18), 8445 (2023)
CrossRef ADS arXiv Google scholar
[15]
B. Cheng, Y. Gao, Z. Zheng, S. Chen, Z. Liu, L. Zhang, Q. Zhu, H. Li, L. Li, and C. Zeng, Giant nonlinear Hall and wireless rectification effects at room temperature in the elemental semiconductor tellurium, Nat. Commun. 15(1), 5513 (2024)
CrossRef ADS Google scholar
[16]
G. Kim, J. Bahng, J. Jeong, W. Sakong, T. Lee, D. Lee, Y. Kim, H. Rho, and S. C. Lim, Gate modulation of dissipationless nonlinear quantum geometric current in 2D Te, Nano Lett. 24(35), 10820 (2024)
CrossRef ADS Google scholar
[17]
B. Cheng, L. Li, N. Zhang, L. Zhang, X. Li, Z. Lin, H. Li, Z. Wang, and C. Zeng, Topological field-effect transistor based on quasi-two-dimensional tellurium flakes, Phys. Rev. Appl. 17(5), 054044 (2022)
CrossRef ADS Google scholar
[18]
W. Ma, Y. Gao, L. Shang, W. Zhou, N. Yao, L. Jiang, Q. Qiu, J. Li, Y. Shi, Z. Hu, and Z. Huang, Ultrabroadband tellurium photoelectric detector from visible to millimeter wave, Adv. Sci. (Weinh.) 9(5), 2103873 (2022)
CrossRef ADS Google scholar
[19]
Q. Zhao, F. Gao, H. Chen, W. Gao, M. Xia, Y. Pan, H. Shi, S. Su, X. Fang, and J. Li, High performance polarization-sensitive self-powered imaging photodetectors based on a p-Te/n-MoSe2 van der Waals heterojunction with strong interlayer transition, Mater. Horiz. 8(11), 3113 (2021)
CrossRef ADS Google scholar
[20]
M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami, and T. Miyake, Weyl node and spin texture in trigonal tellurium and selenium, Phys. Rev. Lett. 114(20), 206401 (2015)
CrossRef ADS arXiv Google scholar
[21]
G. Qiu, S. Huang, M. Segovia, P. K. Venuthurumilli, Y. Wang, W. Wu, X. Xu, and P. D. Ye, Thermoelectric performance of 2D tellurium with accumulation contacts, Nano Lett. 19(3), 1955 (2019)
CrossRef ADS arXiv Google scholar
[22]
Y. Yang,M. Xu,S. Jia,B. Wang,L. Xu, X. Wang,H. Liu,Y. Liu,Y. Guo,L. Wang, S. Duan,K. Liu,M. Zhu,J. Pei,W. Duan, D. Liu,H. Li, A new opportunity for the emerging tellurium semiconductor: Making resistive switching devices, Nat. Commun. 12(1), 6081 (2021)
[23]
J. He, Y. Qu, S. Chen, C. Wang, L. Du, X. Du, Y. Zheng, G. Zhao, and H. Tian, Highly sensitive flexible strain sensor based on the two-dimensional semiconductor tellurium with a negative gauge factor, Sci. China Inf. Sci. 67(7), 172401 (2024)
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 62205011, 52302189, U24A20302, and 62274046), the Fundamental Research Funds for the Central Universities (No. buctrc202122), the R&D Program of Beijing Municipal Education Commission (No. KM202310028013), and the Singapore National Research Foundation (No. NRF-CRP22-2019-7240004).

RIGHTS & PERMISSIONS

2025 Higher Education Press
AI Summary AI Mindmap
PDF(8833 KB)

Accesses

Citations

Detail

Sections
Recommended

/