
Solidum alginate gated oxide dendritic transistor for spatiotemporal arithmetic application
You Jie Huang, Lin Feng Wu, Jia Kang Di, Xin Huang, Wei Sheng Wang, Si Yuan Zhou, Bei Chen Gong, Li Qiang Zhu
Front. Phys. ›› 2025, Vol. 20 ›› Issue (3) : 034205.
Solidum alginate gated oxide dendritic transistor for spatiotemporal arithmetic application
As a novel computing paradigm that transcends traditional von Neumann architectures, neuromorphic computing integrates learning and memory functions. The ability to mimic multi-input spatiotemporal integration is crucial for achieving efficient neuromorphic computing. In this work, we fabricated a multi-gate solid-state amorphous (SA) electrolyte-gated oxide dendritic transistor, which exhibits in-plane-gate modulatory behaviors and dendritic neural functions. Leveraging unique proton migration, we successfully simulated Ebbinghaus memory forgetting. By applying spatiotemporal dendritic inputs, we mimicked temporal integration and coincidence detection. Additionally, we demonstrated neural multiplication operations using frequency-encoded signals. Furthermore, spatially correlated sensitization and desensitization behaviors of pain perception were implemented on the multi-gate dendritic transistors. Collectively, these results indicate that the present oxide dendritic transistors could serve as fundamental building blocks for advanced cognitive neuromorphic platforms.
oxide dendrite transistor / dendritic multiplication operation / spatially correlated sensitization and desensitization
Fig.1 (a) Schematic diagram of the device processing for ITO dendrite transistor. (b) AFM surface morphology image of SA film. (c) Cross-sectional SEM image of the SA film. (d) FTIR spectrum of SA film. (e) Frequency-dependent specific capacitance of the SA electrolyte film. (f) Output curves and (g) transfer curves of the SA gated ITO dendrite transistor operated at coplanar gate (G1) mode. |
Fig.2 (a) Schematic diagram of biological neurons. (b) Schematic diagram of the ITO dendrite transistor. (c) A typical EPSC response trigged with a gate spike (1.5 V, 10 ms). Vds is set to 1 V. (d) PPF index as a function of Δt. Inset: A typical EPSC response triggered with paired spikes (1.5 V, 10 ms) with Δt of 20 ms. (e) EPSC responses triggered by spikes (1.5 V, 10 ms) with different frequencies. (f) PTP index as a function of spike frequency. |
Fig.3 (a) Decayed channel conductance (η) at different number spikes. (b) η∞, τ and ΔGmax values as a function of spike number extracted from (a). (c) Decayed η at different spike duration. (d) η∞, τ and ΔGmax values as a function of spike duration. (e) Decayed η at different spike amplitude. (f) η∞, τ and ΔGmax values as a function of spike amplitude. |
Fig.4 (a) Schematic diagram of spikes for mimicking coincidence detection. V1 (2 V, 10 ms), V2(2 V, 10 ms) and V3 (2 V, 10 ms) are loaded on G1, G2 and G3, respectively. (b) Typical EPSC response with ΔT3-2 and ΔT1-2 of −30 ms and 30 ms, respectively. Pi as a function of ΔT1-2: (c) ΔT3-2 = −50 ms, (d) ΔT3-2=0 ms, (e) ΔT3-2 = 50 ms. (f) Pi as a function of ΔT3-2 at different ΔT1-2. |
Fig.5 (a) EPSC responses triggered by spatiotemporally correlated frequency encoded V1 and V2 spikes (1 V, 10 ms) loaded on G1 and G2. (b) EPSC gain (R) at different f1 and f2 values for V1 and V2 spikes. (c) EPSC responses triggered by spatiotemporally correlated frequency encoded V1 spike (1 V, 10 ms) and V2 spike (−0,5 V, 10 ms) loaded on G1 and G2. (d) EPSC gain (R) at different f1 and f2 values for V1 and V2 spikes. |
Fig.6 (a) Schematic diagram of a biological nociceptive system. (b) EPSC values with different spike amplitudes and durations. (c) EPSC response on spikes with different spike amplitudes at fixed spike duration of 10 ms. (d) EPSC response on spikes with different durations at fixed spike amplitudes of 1.5 V. (e) EPSC responses on 100 consecutive spikes with different amplitudes. Spike interval and duration time are 20 ms and 10 ms, respectively. (f) Noxious spikes followed by non-noxious spike. The interval time between noxious stimulus and non-noxious stimulus (2 V) is 90 ms. The spike duration time is 10ms. (g) EPSC responses on spikes in (f) loaded on G1. (h) EPSC responses on spikes in (f) loaded on G4. (i) H vs. U value at different dendrites, i.e., G1, G2, G3, and G4. (j) Noxious spikes (2.5 V, 10 ms) followed by non-noxious spike (1.5 V, 10 ms) with different spike interval time. (k) EPSC responses on spikes in (j) loaded on G1. (l) EPSC responses on spikes in (j) loaded on G4. (m) E vs. ΔT value at different dendrites, i.e., G1, G2, G3, and G4. |
[1] |
J. Backus, Can programming be liberated from the Von Neumann style? A functional style and its algebra of programs, Commun. ACM 21(8), 613 (1978)
CrossRef
ADS
Google scholar
|
[2] |
C. K. Machens, Building the human brain, Science 338(6111), 1156 (2012)
CrossRef
ADS
Google scholar
|
[3] |
G. Indiveri,E. Chicca,R. Douglas, A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity, IEEE Trans. Neural Netw. 17(1), 211 (2006)
|
[4] |
W. Xiong, L. Q. Zhu, C. Ye, Z. Y. Ren, F. Yu, H. Xiao, Z. Xu, Y. Zhou, H. Zhou, and H. L. Lu, Flexible poly (vinyl alcohol)–graphene oxide hybrid nanocomposite based cognitive memristor with pavlovian‐conditioned reflex activities, Adv. Electron. Mater. 6(5), 1901402 (2020)
CrossRef
ADS
Google scholar
|
[5] |
Z. L. Dong, Q. L. Hua, J. G. Xi, Y. H. Shi, T. C. Huang, X. H. Dai, J. A. Niu, B. J. Wang, Z. L. Wang, and W. G. Hu, Ultrafast and low-power 2D Bi2O2Se memristors for neuromorphic computing applications, Nano Lett. 23(9), 3842 (2023)
CrossRef
ADS
Google scholar
|
[6] |
Z. Xu, Y. X. Li, Y. Xia, C. Y. Shi, S. J. Chen, C. L. Ma, C. Zhang, and Y. Li, Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device, Adv. Funct. Mater. 34(16), 2312658 (2024)
CrossRef
ADS
Google scholar
|
[7] |
X. J. Zhu, D. Li, X. G. Liang, and W. D. Lu, Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing, Nat. Mater. 18(2), 141 (2019)
CrossRef
ADS
Google scholar
|
[8] |
J. L. Meng, J. R. Song, Y. Q. Fang, T. Y. Wang, H. Zhu, L. Ji, Q. Q. Sun, D. W. Zhang, and L. Chen, Ionic diffusive nanomemristors with dendritic competition and cooperation functions for ultralow voltage neuromorphic computing, ACS Nano 18(12), 9150 (2024)
CrossRef
ADS
Google scholar
|
[9] |
U. Y. Won, Q. An Vu, S. B. Park, M. H. Park, V. Dam Do, H. J. Park, H. Yang, Y. H. Lee, and W. J. Yu, Multi-neuron connection using multi-terminal floating-gate memristor for unsupervised learning, Nat. Commun. 14(1), 3070 (2023)
CrossRef
ADS
Google scholar
|
[10] |
Y. H. Lin, W. X. Wang, R. L. Li, J. Kim, C. W. Zhang, H. Kan, and Y. Li, Multifunctional optoelectronic memristor based on CeO2/MoS2 heterojunction for advanced artificial synapses and bionic visual system with nociceptive sensing, Nano Energy 121, 109267 (2024)
CrossRef
ADS
Google scholar
|
[11] |
T. Y. Long, L. Q. Zhu, Z. Y. Ren, and Y. B. Guo, Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors, J. Phys. D Appl. Phys. 53(43), 435105 (2020)
CrossRef
ADS
Google scholar
|
[12] |
X. Liu,C. Sun,Z. Guo,Y. Zhang,Z. Zhang, J. Shang,Z. Zhong,X. Zhu,X. Yu,R. W. Li, A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing, Nanoscale Adv. 4(11), 2412 (2022)
|
[13] |
Y. L. He, S. Nie, R. Liu, S. S. Jiang, Y. Shi, and Q. Wan, Spatiotemporal information processing emulated by multiterminal neuro-transistor networks, Adv. Mater. 31(21), 1900903 (2019)
CrossRef
ADS
Google scholar
|
[14] |
W. N. Hu, J. Jiang, D. D. Xie, S. T. Wang, K. X. Bi, H. G. Duan, J. L. Yang, and J. He, Transient security transistors self-supported on biodegradable natural-polymer membranes for brain-inspired neuromorphic applications, Nanoscale 10(31), 14893 (2018)
CrossRef
ADS
Google scholar
|
[15] |
W. T. Gao, L. Q. Zhu, J. Tao, D. Y. Wan, H. Xiao, and F. Yu, Dendrite integration mimicked on starch-based electrolyte-gated oxide dendrite transistors, ACS Appl. Mater. Interfaces 10(46), 40008 (2018)
CrossRef
ADS
Google scholar
|
[16] |
J. M. Guo, Y. H. Liu, F. C. Zhou, F. Z. Li, Y. T. Li, and F. Huang, Linear classification function emulated by pectin-based polysaccharide-gated multiterminal neuron transistors, Adv. Funct. Mater. 31(33), 2102015 (2021)
CrossRef
ADS
Google scholar
|
[17] |
Y. Li, Y. J. Huang, X. L. Chen, W. S. Wang, X. Huang, H. Xiao, and L. Q. Zhu, Multi-terminal pectin/chitosan hybrid electrolyte gated oxide neuromorphic transistor with multi-mode cognitive activities, Front. Phys. (Beijing) 19(5), 53204 (2024)
CrossRef
ADS
Google scholar
|
[18] |
C. Y. Zheng, Y. Liao, Z. Y. Xiong, Y. Zhou, and S. T. Han, Mimicking the competitive and cooperative behaviors with multi-terminal synaptic memtransistors, J. Mater. Chem. C 8(18), 6063 (2020)
CrossRef
ADS
Google scholar
|
[19] |
D. H. Edwards, S. R. Yeh, and F. B. Krasne, Neuronal coincidence detection by voltage-sensitive electrical synapses, Proc. Natl. Acad. Sci. USA 95(12), 7145 (1998)
CrossRef
ADS
Google scholar
|
[20] |
R. A. Silver, Neuronal arithmetic, Nat. Rev. Neurosci. 11(7), 474 (2010)
CrossRef
ADS
Google scholar
|
[21] |
A. E. Dubin and A. Patapoutian, Nociceptors: The sensors of the pain pathway, J. Clin. Invest. 120(11), 3760 (2010)
CrossRef
ADS
Google scholar
|
[22] |
S. Mohanapriya, S. D. Bhat, A. K. Sahu, A. Manokaran, R. Vijayakumar, S. Pitchumani, P. Sridhar, and A. K. Shukla, Sodium-alginate-based proton-exchange membranes as electrolytes for DMFCs, Energy Environ. Sci. 3(11), 1746 (2010)
CrossRef
ADS
Google scholar
|
[23] |
P. Kanti, K. Srigowri, J. Madhuri, B. Smitha, and S. Sridhar, Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation, Separ. Purif. Tech. 40(3), 259 (2004)
CrossRef
ADS
Google scholar
|
[24] |
Q. P. Fu, J. Hu, and S. Q. Zhou, Adsorption properties of graphene oxide@sodium alginate composite for Pb(II), J. Iran. Chem. Soc. 21(2), 399 (2024)
CrossRef
ADS
Google scholar
|
[25] |
C. Müller, H. Beck, D. Coulter, and S. Remy, Inhibitory control of linear and supralinear dendritic excitation in CA1 pyramidal neuron, Neuron 75(5), 851 (2012)
CrossRef
ADS
Google scholar
|
[26] |
D. V. Buonomano, Decoding temporal information: A model based on short-term synaptic plasticity, J. Neurosci. 20(3), 1129 (2000)
CrossRef
ADS
Google scholar
|
[27] |
C. C. Wang, C. Weyrer, M. Paturu, D. Fioravante, and W. G. Regehr, Calcium-dependent protein kinase C is not required for post-tetanic potentiation at the hippocampal CA3 to CA1 synapse, J. Neurosci. 36(24), 6393 (2016)
CrossRef
ADS
Google scholar
|
[28] |
S. Kusakari, F. Saitow, Y. Ago, K. Shibasaki, M. Sato-Hashimoto, Y. Matsuzaki, T. Kotani, Y. Murata, H. Hirai, T. Matsuda, H. Suzuki, T. Matozaki, and H. Ohnishi, Shp2 in forebrain neurons regulates synaptic plasticity, locomotion, and memory formation in mice, Mol. Cell. Biol. 35(9), 1557 (2015)
CrossRef
ADS
Google scholar
|
[29] |
R. S. Zucker and W. G. Regehr, Short-term synaptic plasticity, Annu. Rev. Physiol. 64(1), 355 (2002)
CrossRef
ADS
Google scholar
|
[30] |
J. H. Xu, L. He, and L. G. Wu, Role of Ca2+ channels in short-term synaptic plasticity, Curr. Opin. Neurobiol. 17(3), 352 (2007)
CrossRef
ADS
Google scholar
|
[31] |
W. G. Regehr, Short-term presynaptic plasticity, Cold Spring Harb. Perspect. Biol. 4(7), a005702 (2012)
CrossRef
ADS
Google scholar
|
[32] |
H. Ebbinghaus, Memory: A contribution to experimental psychology, Ann. Neurosci. 20(4), 155 (2013)
CrossRef
ADS
Google scholar
|
[33] |
J. M. Murre and J. Dros, Replication and analysis of Ebbinghaus’ forgetting curve, PLoS One 10(7), e0120644 (2015)
CrossRef
ADS
Google scholar
|
[34] |
S. A. Roy and K. D. Alloway, Coincidence detection or temporal integration? What the neurons in somatosensory cortex are doing, J. Neurosci. 21(7), 2462 (2001)
CrossRef
ADS
Google scholar
|
[35] |
H. Agmon-Snir, C. E. Carr, and J. Rinzel, The role of dendrites in auditory coincidence detection, Nature 393(6682), 268 (1998)
CrossRef
ADS
Google scholar
|
[36] |
A. K. Engel, P. Fries, and W. Singer, Dynamic predictions: Oscillations and synchrony in top-down processing, Nat. Rev. Neurosci. 2(10), 704 (2001)
CrossRef
ADS
Google scholar
|
[37] |
J. M. Yan, J. S. Ying, M. Y. Yan, Z. C. Wang, S. S. Li, T. W. Chen, G. Y. Gao, F. Y. Liao, H. S. Luo, T. Zhang, Y. Chai, and R. K. Zheng, Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors, Adv. Funct. Mater. 31(40), 2103982 (2021)
CrossRef
ADS
Google scholar
|
[38] |
R. A. John, N. Tiwari, Y. Y. Chen, and N. Ankit, Ultralow power dual-gated subthreshold oxide neuristors: An enabler for higher order neuronal temporal correlations, ACS Nano 12(11), 11263 (2018)
CrossRef
ADS
Google scholar
|
[39] |
C. J. Wan, L. Q. Zhu, Y. H. Liu, P. Feng, Z. P. Liu, H. L. Cao, P. Xiao, Y. Shi, and Q. Wan, Proton-conducting graphene oxide-coupled neuron transistors for brain-inspired cognitive systems, Adv. Mater. 28(18), 3557 (2016)
CrossRef
ADS
Google scholar
|
[40] |
Y. J. Huang, W. S. Wang, X. Huang, J. K. Di, H. Xiao, and L. Q. Zhu, Oxide dendrite transistors gated with polyvinyl alcohol/chitosan hybrid electrolyte for spatiotemporal integration, J. Alloys Compd. 1010, 177938 (2025)
CrossRef
ADS
Google scholar
|
[41] |
M. J. Tovee, E. T. Rolls, and P. Azzopardi, Translation invariance in the responses to faces of single neurons in the temporal visual cortical areas of the alert macaque, J. Neurophysiol. 72(3), 1049 (1994)
CrossRef
ADS
Google scholar
|
[42] |
R. A. Andersen, G. K. Essick, and R. M. Siegel, Encoding of spatial location by posterior parietal neurons, Science 230(4724), 456 (1985)
CrossRef
ADS
Google scholar
|
[43] |
A. E. Dubin and A. Patapoutian, Nociceptors: The sensors of the pain pathway, J. Clin. Invest. 120(11), 3760 (2010)
CrossRef
ADS
Google scholar
|
[44] |
A. I. Basbaum, D. M. Bautista, G. Scherrer, and D. Julius, Cellular and molecular mechanisms of pain, Cell 139(2), 267 (2009)
CrossRef
ADS
Google scholar
|
[45] |
T. Hucho and J. D. Levine, Signaling pathways in sensitization: Toward a nociceptor cell biology, Neuron 55(3), 365 (2007)
CrossRef
ADS
Google scholar
|
[46] |
Z. H. Xu, G. B. Chen, S. B. Chen, and H. H. Xu, Mimicking pain conditioning using an electrolyte-gated organic synaptic transistor, Adv. Mater. Technol. 9(11), 2302047 (2024)
CrossRef
ADS
Google scholar
|
[47] |
Y. T. Xu, D. P. Liu, S. L. Dai, J. Y. Zhang, Z. Y. Guo, X. Liu, L. Z. Xiong, and J. Huang, Stretchable and neuromorphic transistors for pain perception and sensitization emulation, Mater. Horiz. 11(4), 958 (2024)
CrossRef
ADS
Google scholar
|
Supplementary files
fop-25052-of-zhuliqiang_suppl_1 (745 KB)
Part of a collection:
/
〈 |
|
〉 |