Quantum anomalous Hall effect in monolayers Ti2X2 (X = P, As, Sb, Bi) with tunable Chern numbers by adjusting magnetization orientation

Keer Huang, Lei Li, Wu Zhao, Xuewen Wang

PDF(3693 KB)
PDF(3693 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (2) : 024203. DOI: 10.15302/frontphys.2025.024203
RESEARCH ARTICLE

Quantum anomalous Hall effect in monolayers Ti2X2 (X = P, As, Sb, Bi) with tunable Chern numbers by adjusting magnetization orientation

Author information +
History +

Abstract

Despite extensive research, the achievement of tunable Chern numbers in quantum anomalous Hall (QAH) systems remains a challenge in the field of condensed matter physics. Here, we theoretically proposed that Ti2X2 (X = P, As, Sb, Bi) can realize tunable Chern numbers QAH effect by adjusting their magnetization orientations. In the case of Ti2P2 and Ti2As2, if the magnetization lies in the xy plane, and all C2 symmetries are broken, a low-Chern-number phase with C = 1 will manifest. Conversely, if the magnetization is aligned to the z-axis, the systems enter a high-Chern number phase with C = 3. As for Ti2Sb2 and Ti2Bi2, by manipulating the in-plane magnetization orientation, these systems can periodically enter topological phases (C = ±1) over a 60° interval. Adjusting the magnetization orientation from +z to −z will result in the systems’ Chern number alternating between ±1. The non-trivial gap in monolayer Ti2X2 (X = P, As, Sb, Bi) can reach values of 23.4, 54.4, 60.8, and 88.2 meV, respectively. All of these values are close to the room-temperature energy scale. Furthermore, our research has revealed that the application of biaxial strain can effectively modify the magnetocrystalline anisotropic energy, which is advantageous in the manipulation of magnetization orientation. This work provides a family of large-gap QAH insulators with tunable Chern numbers, demonstrating promising prospects for future electronic applications.

Graphical abstract

Keywords

tunable Chern number / ferromagnetic / quantum anomalous Hall effect / Ti2X2 (X = P, As, Sb, Bi) / first-principles

Cite this article

Download citation ▾
Keer Huang, Lei Li, Wu Zhao, Xuewen Wang. Quantum anomalous Hall effect in monolayers Ti2X2 (X = P, As, Sb, Bi) with tunable Chern numbers by adjusting magnetization orientation. Front. Phys., 2025, 20(2): 024203 https://doi.org/10.15302/frontphys.2025.024203

References

[1]
L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)
CrossRef ADS Google scholar
[2]
P. Li, X. Yang, Q. S. Jiang, Y. Z. Wu, and W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
CrossRef ADS Google scholar
[3]
H. Huan, Y. Xue, B. Zhao, G. Y. Gao, H. R. Bao, and Z. Q. Yang, Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os), Phys. Rev. B 104(16), 165427 (2021)
CrossRef ADS Google scholar
[4]
P. Li, Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect, Phys. Chem. Chem. Phys. 21(12), 6712 (2019)
CrossRef ADS Google scholar
[5]
B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25(4), 2185 (1982)
CrossRef ADS Google scholar
[6]
F. D. M. Haldane, Nobel Lecture: Topological quantum matter, Rev. Mod. Phys. 89(4), 040502 (2017)
CrossRef ADS Google scholar
[7]
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[8]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[9]
H. Chi and J. S. Moodera, Progress and prospects in the quantum anomalous Hall effect, APL Mater. 10(9), 090903 (2022)
CrossRef ADS Google scholar
[10]
C. Z. Chang, C. X. Liu, and A. H. MacDonald, Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95(1), 011002 (2023)
CrossRef ADS Google scholar
[11]
J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X. Xu, Signatures of fractional quantum anomalous Hall states in twisted MoTe2, Nature 622(7981), 63 (2023)
CrossRef ADS Google scholar
[12]
P. Deng, P. Zhang, C. Eckberg, S. K. Chong, G. Yin, E. Emmanouilidou, X. Che, N. Ni, and K. L. Wang, Quantized resistance revealed at the criticality of the quantum anomalous Hall phase transitions, Nat. Commun. 14(1), 5558 (2023)
CrossRef ADS Google scholar
[13]
G. M. Ferguson, R. Xiao, A. R. Richardella, D. Low, N. Samarth, and K. C. Nowack, Direct visualization of electronic transport in a quantum anomalous Hall insulator, Nat. Mater. 22, 1100 (2023)
CrossRef ADS Google scholar
[14]
P. J. Guo, Z. X. Liu, and Z. Y. Lu, Quantum anomalous Hall effect in collinear antiferromagnetism, npj Comput. Mater. 9(1), 70 (2023)
CrossRef ADS Google scholar
[15]
Y. L. Jiao, X. T. Zeng, C. Chen, Z. Gao, K. Y. Song, X. L. Sheng, and S. A. Yang, Monolayer and bilayer PtCl3: Energetics, magnetism, and band topology, Phys. Rev. B 107(7), 075436 (2023)
CrossRef ADS Google scholar
[16]
J. Li and R. Q. Wu, Electrically tunable topological phase transition in van der Waals heterostructures, Nano Lett. 23(6), 2173 (2023)
CrossRef ADS Google scholar
[17]
S. S. Li, X. Y. Li, W. X. Ji, P. Li, S. S. Yan, and C. W. Zhang, Quantum anomalous Hall effect with a high and tunable Chern number in monolayer NdN2, Phys. Chem. Chem. Phys. 25(27), 18275 (2023)
CrossRef ADS Google scholar
[18]
X. Y. Li, X. F. Xu, H. Zhou, H. X. Jia, E. Wang, H. X. Fu, J. T. Sun, and S. Meng, Tunable topological states in stacked Chern insulator bilayers, Nano Lett. 23(7), 2839 (2023)
CrossRef ADS Google scholar
[19]
H. Park, J. Cai, E. Anderson, Y. Zhang, J. Zhu, X. Liu, C. Wang, W. Holtz-mann, C. Hu, Z. Liu, T. Taniguchi, K. Watanabe, J. H. Chu, T. Cao, L. Fu, W. Yao, C. Z. Chang, D. Cobden, D. Xiao, and X. Xu, Observation of fractionally quantized anomalous Hall effect, Nature 622(7981), 74 (2023)
CrossRef ADS Google scholar
[20]
P. Zhang, P. P. Balakrishnan, C. Eckberg, P. Deng, T. Nozaki, S. K. Chong, P. Quarterman, M. E. Holtz, B. B. Maranville, G. Qiu, L. Pan, E. Emmanouilidou, N. Ni, M. Sahashi, A. Grutter, and K. L. Wang, Exchange biased quantum anomalous Hall effect, Adv. Mater. 35(31), 2300391 (2023)
CrossRef ADS Google scholar
[21]
S. Zhang, X. M. Zhang, Z. Q. He, L. Jin, C. Liu, Y. Liu, and G. D. Liu, Weyl nodal lines, Weyl points and the tunable quantum anomalous Hall effect in two-dimensional multiferroic metal oxynitride: Tl2NO2, Nanoscale 15(34), 14018 (2023)
CrossRef ADS Google scholar
[22]
Y. F. Zhao, R. Zhang, J. Cai, D. Zhuo, L. J. Zhou, Z. J. Yan, M. H. W. Chan, X. Xu, and C. Z. Chang, Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures, Nat. Commun. 14(1), 770 (2023)
CrossRef ADS Google scholar
[23]
L. J. Zhou, R. B. Mei, Y. F. Zhao, R. X. Zhang, D. Y. Zhuo, Z. J. Yan, W. Yuan, M. Kayyalha, M. H. W. Chan, C. X. Liu, and C. Z. Chang, Confinement-induced chiral edge channel interaction in quantum anomalous Hall insulators, Phys. Rev. Lett. 130(8), 086201 (2023)
CrossRef ADS Google scholar
[24]
Y. Gao, Y. Y. Zhang, J. T. Sun, L. Zhang, S. Zhang, and S. Du, Quantum anomalous Hall effect in two-dimensional Cu-dicyanobenzene coloring-triangle lattice, Nano Res. 13(6), 1571 (2020)
CrossRef ADS Google scholar
[25]
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
CrossRef ADS Google scholar
[26]
Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4, Science 367(6480), 895 (2020)
CrossRef ADS Google scholar
[27]
J. Wang, B. Lian, H. Zhang, Y. Xu, and S. C. Zhang, Quantum anomalous Hall effect with higher plateaus, Phys. Rev. Lett. 111(13), 136801 (2013)
CrossRef ADS Google scholar
[28]
C. Z. Chang, W. Zhao, D. Y. Kim, P. Wei, J. K. Jain, C. Liu, M. H. W. Chan, and J. S. Moodera, Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state, Phys. Rev. Lett. 115(5), 057206 (2015)
CrossRef ADS Google scholar
[29]
Y. X. Wang and F. Li, High Chern number phase in topological insulator multilayer structures, Phys. Rev. B 104(3), 035202 (2021)
CrossRef ADS Google scholar
[30]
M. Bosnar, A. Y. Vyazovskaya, E. K. Petrov, E. V. Chulkov, and M. M. Otrokov, High Chern number van der Waals magnetic topological multilayers MnBi2Te4/hBN, npj 2D Mater. Appl. 7(1), 33 (2023)
CrossRef ADS Google scholar
[31]
J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, High-chernnumber and high-temperature quantum Hall effect without landau levels, Natl. Sci. Rev. 7(8), 1280 (2020)
CrossRef ADS Google scholar
[32]
Y. F. Zhao, R. Zhang, R. Mei, L. J. Zhou, H. Yi, Y. Q. Zhang, J. Yu, R. Xiao, K. Wang, N. Samarth, M. H. W. Chan, C. X. Liu, and C. Z. Chang, Tuning the Chern number in quantum anomalous Hall insulators, Nature 588(7838), 419 (2020)
CrossRef ADS Google scholar
[33]
Y. Li, J. Li, Y. Li, M. Ye, F. Zheng, Z. Zhang, J. Fu, W. Duan, and Y. Xu, High-temperature quantum anomalous Hall insulators in lithium-decorated iron-based superconductor materials, Phys. Rev. Lett. 125(8), 086401 (2020)
CrossRef ADS Google scholar
[34]
H. Huan, Y. Xue, B. Zhao, H. Bao, L. Liu, and Z. Yang, Tunable Weyl half-semimetals in two-dimensional iron-based materials MFeSe (M = Tl, In, Ga), Phys. Rev. B 106(12), 125404 (2022)
CrossRef ADS Google scholar
[35]
Z. Li, Y. Han, and Z. Qiao, Chern number tunable quantum anomalous Hall effect in monolayer transitional metal oxides via manipulating magnetization orientation, Phys. Rev. Lett. 129(3), 036801 (2022)
CrossRef ADS Google scholar
[36]
L. Jin, L. R. Wang, X. M. Zhang, Y. Liu, X. F. Dai, H. L. Gao, and G. D. Liu, Fully spin-polarized Weyl fermions and in/out-of-plane quantum anomalous Hall effects in a two-dimensional d0 ferromagnet, Nanoscale 13(11), 5901 (2021)
CrossRef ADS Google scholar
[37]
K. Wang, Y. Li, H. Mei, P. Li, and Z. X. Guo, Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Phys. Rev. Mater. 6(4), 044202 (2022)
CrossRef ADS Google scholar
[38]
L. Li, X. Kong, X. Chen, J. Li, B. Sanyal, and F. M. Peeters, Monolayer 1T-LaN2: Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number, Appl. Phys. Lett. 117(14), 143101 (2020)
CrossRef ADS Google scholar
[39]
S. D. Guo, W. Q. Mu, and B. G. Liu, Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2, 2D Mater. 9(3), 035011 (2022)
CrossRef ADS Google scholar
[40]
X. Feng, L. Cai, Z. Chen, Y. Dai, B. Huang, and C. Niu, Tunable second-order topological insulators in Chern insulators 2H-FeX2 (X = Cland Br), Appl. Phys. Lett. 122(19), 193104 (2023)
CrossRef ADS Google scholar
[41]
Y. Wu, J. Tong, L. Deng, F. Luo, F. Tian, G. Qin, and X. Zhang, Realizing spontaneous valley polarization and topological phase transitions in monolayer ScX2 (X = Cl, Br, I), Acta Mater. 246, 118731 (2023)
CrossRef ADS Google scholar
[42]
X. L. Sheng and B. K. Nikolić, Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions, Phys. Rev. B 95(20), 201402 (2017)
CrossRef ADS Google scholar
[43]
J. He, X. Li, P. Lyu, and P. Nachtigall, Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: Nickel chloride monolayer, Nanoscale 9(6), 2246 (2017)
CrossRef ADS Google scholar
[44]
S. D. Guo, W. Q. Mu, X. B. Xiao, and B. G. Liu, Intrinsic room-temperature piezoelectric quantum anomalous Hall insulator in Janus monolayer Fe2IX (X = Cl and Br), Nanoscale 13(30), 12956 (2021)
CrossRef ADS Google scholar
[45]
J. Y. You, C. Chen, Z. Zhang, X. L. Sheng, S. A. Yang, and G. Su, Two-dimensional Weyl half-semimetal and tunable quantum anomalous Hall effect, Phys. Rev. B 100(6), 064408 (2019)
CrossRef ADS Google scholar
[46]
H. Zhang, W. Yang, P. Cui, X. Xu, and Z. Zhang, Prediction of monolayered ferromagnetic CrMnI6 as an intrinsic high-temperature quantum anomalous Hall system, Phys. Rev. B 102(11), 115413 (2020)
CrossRef ADS Google scholar
[47]
J. Y. You, Z. Zhang, B. Gu, and G. Su, Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous Hall effect, Phys. Rev. Appl. 12(2), 024063 (2019)
CrossRef ADS Google scholar
[48]
B. Zhang, F. Deng, X. Chen, X. Lv, and J. Wang, Quantum anomalous Hall effect in M2X3 honeycomb Kagome lattice, J. Phys. Condens. Matter 34(47), 475702 (2022)
CrossRef ADS Google scholar
[49]
H. P. Wang, W. Luo, and H. J. Xiang, Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides, Phys. Rev. B 95(12), 125430 (2017)
CrossRef ADS Google scholar
[50]
P. Li and Z. X. Guo, The Dirac half-semimetal and quantum anomalous Hall effect in two-dimensional Janus Mn2X3Y3 (X, Y = F, Cl, Br, I), Phys. Chem. Chem. Phys. 23(35), 19673 (2021)
CrossRef ADS Google scholar
[51]
P. Li, Y. Ma, Y. Zhang, and Z. X. Guo, Room temperature quantum anomalous Hall insulator in a honeycomb-Kagome lattice, Ta2O3, with huge magnetic anisotropy energy, ACS Appl. Electron. Mater. 3(4), 1826 (2021)
CrossRef ADS Google scholar
[52]
M. Aapro, M. N. Huda, J. Karthikeyan, S. Kezilebieke, S. C. Ganguli, H. G. Herrero, X. Huang, P. Liljeroth, and H. P. Komsa, Synthesis and properties of monolayer MnSe with unusual atomic structure and antiferromagnetic ordering, ACS Nano 15(8), 13794 (2021)
CrossRef ADS Google scholar
[53]
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef ADS Google scholar
[54]
J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids 10(2−3), 87 (1959)
CrossRef ADS Google scholar
[55]
J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
CrossRef ADS Google scholar
[56]
W. E. Pickett and J. S. Moodera, Half metallic magnets, Phys. Today 54(5), 39 (2001)
CrossRef ADS Google scholar
[57]
I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
CrossRef ADS Google scholar
[58]
Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition, Nat. Commun. 5(1), 5246 (2014)
CrossRef ADS Google scholar
[59]
G. H. Ahn, M. Amani, H. Rasool, D. H. Lien, J. P. Mastandrea, J. W. III Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, Strain-engineered growth of two-dimensional materials, Nat. Commun. 8(1), 608 (2017)
CrossRef ADS Google scholar
[60]
C. Zhang, M. Y. Li, J. Tersoff, Y. Han, Y. Su, L. J. Li, D. A. Muller, and C. K. Shih, Strain distributions and their influence on electronic structures of WSe2‒MoS2 laterally strained heterojunctions, Nat. Nanotechnol. 13(2), 152 (2018)
CrossRef ADS Google scholar
[61]
Z. Dai, L. Liu, and Z. Zhang, 2D materials: Strain engineering of 2D materials: Issues and opportunities at the interface, Adv. Mater 31(45), 1970322 (2019)
CrossRef ADS Google scholar
[62]
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, D. Wang, W. Dang, K. Chen, L. Liao, X. Duan, X. Duan, and Y. Liu, Efficient strain modulation of 2D materials via polymer encapsulation, Nat. Commun. 11(2), 1151 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare no competing interests and no conflicts.

Electronic supplementary materials

The computational details, theoretical models and details, structural stabilities, relative magnetic properties, relative properties of different magnetization directions, which are available in the online version of this article at https://doi.org/10.15302/frontphys.2025.024203 and are accessible for authorized users.

Acknowledgements

The authors acknowledge the support by the National Natural Science Foundation of China (Grant Nos. 30930852, 62371397, and 62374134) and the start-up funds from Northwestern Polytechnical University.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3693 KB)

Accesses

Citations

Detail

Sections
Recommended

/