Quantum anomalous Hall effect in monolayers Ti2X2 (X = P, As, Sb, Bi) with tunable Chern numbers by adjusting magnetization orientation
Keer Huang, Lei Li, Wu Zhao, Xuewen Wang
Quantum anomalous Hall effect in monolayers Ti2X2 (X = P, As, Sb, Bi) with tunable Chern numbers by adjusting magnetization orientation
Despite extensive research, the achievement of tunable Chern numbers in quantum anomalous Hall (QAH) systems remains a challenge in the field of condensed matter physics. Here, we theoretically proposed that Ti2X2 (X = P, As, Sb, Bi) can realize tunable Chern numbers QAH effect by adjusting their magnetization orientations. In the case of Ti2P2 and Ti2As2, if the magnetization lies in the x−y plane, and all C2 symmetries are broken, a low-Chern-number phase with C = 1 will manifest. Conversely, if the magnetization is aligned to the z-axis, the systems enter a high-Chern number phase with C = 3. As for Ti2Sb2 and Ti2Bi2, by manipulating the in-plane magnetization orientation, these systems can periodically enter topological phases (C = ±1) over a 60° interval. Adjusting the magnetization orientation from +z to −z will result in the systems’ Chern number alternating between ±1. The non-trivial gap in monolayer Ti2X2 (X = P, As, Sb, Bi) can reach values of 23.4, 54.4, 60.8, and 88.2 meV, respectively. All of these values are close to the room-temperature energy scale. Furthermore, our research has revealed that the application of biaxial strain can effectively modify the magnetocrystalline anisotropic energy, which is advantageous in the manipulation of magnetization orientation. This work provides a family of large-gap QAH insulators with tunable Chern numbers, demonstrating promising prospects for future electronic applications.
tunable Chern number / ferromagnetic / quantum anomalous Hall effect / Ti2X2 (X = P, As, Sb, Bi) / first-principles
[1] |
L. Fu, C. L. Kane, and E. J. Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98(10), 106803 (2007)
CrossRef
ADS
Google scholar
|
[2] |
P. Li, X. Yang, Q. S. Jiang, Y. Z. Wu, and W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
CrossRef
ADS
Google scholar
|
[3] |
H. Huan, Y. Xue, B. Zhao, G. Y. Gao, H. R. Bao, and Z. Q. Yang, Strain-induced half-valley metals and topological phase transitions in MBr2 monolayers (M = Ru, Os), Phys. Rev. B 104(16), 165427 (2021)
CrossRef
ADS
Google scholar
|
[4] |
P. Li, Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect, Phys. Chem. Chem. Phys. 21(12), 6712 (2019)
CrossRef
ADS
Google scholar
|
[5] |
B. I. Halperin, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B 25(4), 2185 (1982)
CrossRef
ADS
Google scholar
|
[6] |
F. D. M. Haldane, Nobel Lecture: Topological quantum matter, Rev. Mod. Phys. 89(4), 040502 (2017)
CrossRef
ADS
Google scholar
|
[7] |
M. Z. Hasan and C. L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[8] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[9] |
H. Chi and J. S. Moodera, Progress and prospects in the quantum anomalous Hall effect, APL Mater. 10(9), 090903 (2022)
CrossRef
ADS
Google scholar
|
[10] |
C. Z. Chang, C. X. Liu, and A. H. MacDonald, Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95(1), 011002 (2023)
CrossRef
ADS
Google scholar
|
[11] |
J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W. Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watanabe, Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X. Xu, Signatures of fractional quantum anomalous Hall states in twisted MoTe2, Nature 622(7981), 63 (2023)
CrossRef
ADS
Google scholar
|
[12] |
P. Deng, P. Zhang, C. Eckberg, S. K. Chong, G. Yin, E. Emmanouilidou, X. Che, N. Ni, and K. L. Wang, Quantized resistance revealed at the criticality of the quantum anomalous Hall phase transitions, Nat. Commun. 14(1), 5558 (2023)
CrossRef
ADS
Google scholar
|
[13] |
G. M. Ferguson, R. Xiao, A. R. Richardella, D. Low, N. Samarth, and K. C. Nowack, Direct visualization of electronic transport in a quantum anomalous Hall insulator, Nat. Mater. 22, 1100 (2023)
CrossRef
ADS
Google scholar
|
[14] |
P. J. Guo, Z. X. Liu, and Z. Y. Lu, Quantum anomalous Hall effect in collinear antiferromagnetism, npj Comput. Mater. 9(1), 70 (2023)
CrossRef
ADS
Google scholar
|
[15] |
Y. L. Jiao, X. T. Zeng, C. Chen, Z. Gao, K. Y. Song, X. L. Sheng, and S. A. Yang, Monolayer and bilayer PtCl3: Energetics, magnetism, and band topology, Phys. Rev. B 107(7), 075436 (2023)
CrossRef
ADS
Google scholar
|
[16] |
J. Li and R. Q. Wu, Electrically tunable topological phase transition in van der Waals heterostructures, Nano Lett. 23(6), 2173 (2023)
CrossRef
ADS
Google scholar
|
[17] |
S. S. Li, X. Y. Li, W. X. Ji, P. Li, S. S. Yan, and C. W. Zhang, Quantum anomalous Hall effect with a high and tunable Chern number in monolayer NdN2, Phys. Chem. Chem. Phys. 25(27), 18275 (2023)
CrossRef
ADS
Google scholar
|
[18] |
X. Y. Li, X. F. Xu, H. Zhou, H. X. Jia, E. Wang, H. X. Fu, J. T. Sun, and S. Meng, Tunable topological states in stacked Chern insulator bilayers, Nano Lett. 23(7), 2839 (2023)
CrossRef
ADS
Google scholar
|
[19] |
H. Park, J. Cai, E. Anderson, Y. Zhang, J. Zhu, X. Liu, C. Wang, W. Holtz-mann, C. Hu, Z. Liu, T. Taniguchi, K. Watanabe, J. H. Chu, T. Cao, L. Fu, W. Yao, C. Z. Chang, D. Cobden, D. Xiao, and X. Xu, Observation of fractionally quantized anomalous Hall effect, Nature 622(7981), 74 (2023)
CrossRef
ADS
Google scholar
|
[20] |
P. Zhang, P. P. Balakrishnan, C. Eckberg, P. Deng, T. Nozaki, S. K. Chong, P. Quarterman, M. E. Holtz, B. B. Maranville, G. Qiu, L. Pan, E. Emmanouilidou, N. Ni, M. Sahashi, A. Grutter, and K. L. Wang, Exchange biased quantum anomalous Hall effect, Adv. Mater. 35(31), 2300391 (2023)
CrossRef
ADS
Google scholar
|
[21] |
S. Zhang, X. M. Zhang, Z. Q. He, L. Jin, C. Liu, Y. Liu, and G. D. Liu, Weyl nodal lines, Weyl points and the tunable quantum anomalous Hall effect in two-dimensional multiferroic metal oxynitride: Tl2NO2, Nanoscale 15(34), 14018 (2023)
CrossRef
ADS
Google scholar
|
[22] |
Y. F. Zhao, R. Zhang, J. Cai, D. Zhuo, L. J. Zhou, Z. J. Yan, M. H. W. Chan, X. Xu, and C. Z. Chang, Creation of chiral interface channels for quantized transport in magnetic topological insulator multilayer heterostructures, Nat. Commun. 14(1), 770 (2023)
CrossRef
ADS
Google scholar
|
[23] |
L. J. Zhou, R. B. Mei, Y. F. Zhao, R. X. Zhang, D. Y. Zhuo, Z. J. Yan, W. Yuan, M. Kayyalha, M. H. W. Chan, C. X. Liu, and C. Z. Chang, Confinement-induced chiral edge channel interaction in quantum anomalous Hall insulators, Phys. Rev. Lett. 130(8), 086201 (2023)
CrossRef
ADS
Google scholar
|
[24] |
Y. Gao, Y. Y. Zhang, J. T. Sun, L. Zhang, S. Zhang, and S. Du, Quantum anomalous Hall effect in two-dimensional Cu-dicyanobenzene coloring-triangle lattice, Nano Res. 13(6), 1571 (2020)
CrossRef
ADS
Google scholar
|
[25] |
C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
CrossRef
ADS
Google scholar
|
[26] |
Y. Deng, Y. Yu, M. Z. Shi, Z. Guo, Z. Xu, J. Wang, X. H. Chen, and Y. Zhang, Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4, Science 367(6480), 895 (2020)
CrossRef
ADS
Google scholar
|
[27] |
J. Wang, B. Lian, H. Zhang, Y. Xu, and S. C. Zhang, Quantum anomalous Hall effect with higher plateaus, Phys. Rev. Lett. 111(13), 136801 (2013)
CrossRef
ADS
Google scholar
|
[28] |
C. Z. Chang, W. Zhao, D. Y. Kim, P. Wei, J. K. Jain, C. Liu, M. H. W. Chan, and J. S. Moodera, Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state, Phys. Rev. Lett. 115(5), 057206 (2015)
CrossRef
ADS
Google scholar
|
[29] |
Y. X. Wang and F. Li, High Chern number phase in topological insulator multilayer structures, Phys. Rev. B 104(3), 035202 (2021)
CrossRef
ADS
Google scholar
|
[30] |
M. Bosnar, A. Y. Vyazovskaya, E. K. Petrov, E. V. Chulkov, and M. M. Otrokov, High Chern number van der Waals magnetic topological multilayers MnBi2Te4/hBN, npj 2D Mater. Appl. 7(1), 33 (2023)
CrossRef
ADS
Google scholar
|
[31] |
J. Ge, Y. Liu, J. Li, H. Li, T. Luo, Y. Wu, Y. Xu, and J. Wang, High-chernnumber and high-temperature quantum Hall effect without landau levels, Natl. Sci. Rev. 7(8), 1280 (2020)
CrossRef
ADS
Google scholar
|
[32] |
Y. F. Zhao, R. Zhang, R. Mei, L. J. Zhou, H. Yi, Y. Q. Zhang, J. Yu, R. Xiao, K. Wang, N. Samarth, M. H. W. Chan, C. X. Liu, and C. Z. Chang, Tuning the Chern number in quantum anomalous Hall insulators, Nature 588(7838), 419 (2020)
CrossRef
ADS
Google scholar
|
[33] |
Y. Li, J. Li, Y. Li, M. Ye, F. Zheng, Z. Zhang, J. Fu, W. Duan, and Y. Xu, High-temperature quantum anomalous Hall insulators in lithium-decorated iron-based superconductor materials, Phys. Rev. Lett. 125(8), 086401 (2020)
CrossRef
ADS
Google scholar
|
[34] |
H. Huan, Y. Xue, B. Zhao, H. Bao, L. Liu, and Z. Yang, Tunable Weyl half-semimetals in two-dimensional iron-based materials MFeSe (M = Tl, In, Ga), Phys. Rev. B 106(12), 125404 (2022)
CrossRef
ADS
Google scholar
|
[35] |
Z. Li, Y. Han, and Z. Qiao, Chern number tunable quantum anomalous Hall effect in monolayer transitional metal oxides via manipulating magnetization orientation, Phys. Rev. Lett. 129(3), 036801 (2022)
CrossRef
ADS
Google scholar
|
[36] |
L. Jin, L. R. Wang, X. M. Zhang, Y. Liu, X. F. Dai, H. L. Gao, and G. D. Liu, Fully spin-polarized Weyl fermions and in/out-of-plane quantum anomalous Hall effects in a two-dimensional d0 ferromagnet, Nanoscale 13(11), 5901 (2021)
CrossRef
ADS
Google scholar
|
[37] |
K. Wang, Y. Li, H. Mei, P. Li, and Z. X. Guo, Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Phys. Rev. Mater. 6(4), 044202 (2022)
CrossRef
ADS
Google scholar
|
[38] |
L. Li, X. Kong, X. Chen, J. Li, B. Sanyal, and F. M. Peeters, Monolayer 1T-LaN2: Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number, Appl. Phys. Lett. 117(14), 143101 (2020)
CrossRef
ADS
Google scholar
|
[39] |
S. D. Guo, W. Q. Mu, and B. G. Liu, Valley-polarized quantum anomalous Hall insulator in monolayer RuBr2, 2D Mater. 9(3), 035011 (2022)
CrossRef
ADS
Google scholar
|
[40] |
X. Feng, L. Cai, Z. Chen, Y. Dai, B. Huang, and C. Niu, Tunable second-order topological insulators in Chern insulators 2H-FeX2 (X = Cland Br), Appl. Phys. Lett. 122(19), 193104 (2023)
CrossRef
ADS
Google scholar
|
[41] |
Y. Wu, J. Tong, L. Deng, F. Luo, F. Tian, G. Qin, and X. Zhang, Realizing spontaneous valley polarization and topological phase transitions in monolayer ScX2 (X = Cl, Br, I), Acta Mater. 246, 118731 (2023)
CrossRef
ADS
Google scholar
|
[42] |
X. L. Sheng and B. K. Nikolić, Monolayer of the 5d transition metal trichloride OsCl3: A playground for two-dimensional magnetism, room-temperature quantum anomalous Hall effect, and topological phase transitions, Phys. Rev. B 95(20), 201402 (2017)
CrossRef
ADS
Google scholar
|
[43] |
J. He, X. Li, P. Lyu, and P. Nachtigall, Near-room-temperature Chern insulator and Dirac spin-gapless semiconductor: Nickel chloride monolayer, Nanoscale 9(6), 2246 (2017)
CrossRef
ADS
Google scholar
|
[44] |
S. D. Guo, W. Q. Mu, X. B. Xiao, and B. G. Liu, Intrinsic room-temperature piezoelectric quantum anomalous Hall insulator in Janus monolayer Fe2IX (X = Cl and Br), Nanoscale 13(30), 12956 (2021)
CrossRef
ADS
Google scholar
|
[45] |
J. Y. You, C. Chen, Z. Zhang, X. L. Sheng, S. A. Yang, and G. Su, Two-dimensional Weyl half-semimetal and tunable quantum anomalous Hall effect, Phys. Rev. B 100(6), 064408 (2019)
CrossRef
ADS
Google scholar
|
[46] |
H. Zhang, W. Yang, P. Cui, X. Xu, and Z. Zhang, Prediction of monolayered ferromagnetic CrMnI6 as an intrinsic high-temperature quantum anomalous Hall system, Phys. Rev. B 102(11), 115413 (2020)
CrossRef
ADS
Google scholar
|
[47] |
J. Y. You, Z. Zhang, B. Gu, and G. Su, Two-dimensional room-temperature ferromagnetic semiconductors with quantum anomalous Hall effect, Phys. Rev. Appl. 12(2), 024063 (2019)
CrossRef
ADS
Google scholar
|
[48] |
B. Zhang, F. Deng, X. Chen, X. Lv, and J. Wang, Quantum anomalous Hall effect in M2X3 honeycomb Kagome lattice, J. Phys. Condens. Matter 34(47), 475702 (2022)
CrossRef
ADS
Google scholar
|
[49] |
H. P. Wang, W. Luo, and H. J. Xiang, Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides, Phys. Rev. B 95(12), 125430 (2017)
CrossRef
ADS
Google scholar
|
[50] |
P. Li and Z. X. Guo, The Dirac half-semimetal and quantum anomalous Hall effect in two-dimensional Janus Mn2X3Y3 (X, Y = F, Cl, Br, I), Phys. Chem. Chem. Phys. 23(35), 19673 (2021)
CrossRef
ADS
Google scholar
|
[51] |
P. Li, Y. Ma, Y. Zhang, and Z. X. Guo, Room temperature quantum anomalous Hall insulator in a honeycomb-Kagome lattice, Ta2O3, with huge magnetic anisotropy energy, ACS Appl. Electron. Mater. 3(4), 1826 (2021)
CrossRef
ADS
Google scholar
|
[52] |
M. Aapro, M. N. Huda, J. Karthikeyan, S. Kezilebieke, S. C. Ganguli, H. G. Herrero, X. Huang, P. Liljeroth, and H. P. Komsa, Synthesis and properties of monolayer MnSe with unusual atomic structure and antiferromagnetic ordering, ACS Nano 15(8), 13794 (2021)
CrossRef
ADS
Google scholar
|
[53] |
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef
ADS
Google scholar
|
[54] |
J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Phys. Chem. Solids 10(2−3), 87 (1959)
CrossRef
ADS
Google scholar
|
[55] |
J. Kanamori, Crystal distortion in magnetic compounds, J. Appl. Phys. 31(5), S14 (1960)
CrossRef
ADS
Google scholar
|
[56] |
W. E. Pickett and J. S. Moodera, Half metallic magnets, Phys. Today 54(5), 39 (2001)
CrossRef
ADS
Google scholar
|
[57] |
I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamentals and applications, Rev. Mod. Phys. 76(2), 323 (2004)
CrossRef
ADS
Google scholar
|
[58] |
Z. Liu, M. Amani, S. Najmaei, Q. Xu, X. Zou, W. Zhou, T. Yu, C. Qiu, A. G. Birdwell, F. J. Crowne, R. Vajtai, B. I. Yakobson, Z. Xia, M. Dubey, P. M. Ajayan, and J. Lou, Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition, Nat. Commun. 5(1), 5246 (2014)
CrossRef
ADS
Google scholar
|
[59] |
G. H. Ahn, M. Amani, H. Rasool, D. H. Lien, J. P. Mastandrea, J. W. III Ager, M. Dubey, D. C. Chrzan, A. M. Minor, and A. Javey, Strain-engineered growth of two-dimensional materials, Nat. Commun. 8(1), 608 (2017)
CrossRef
ADS
Google scholar
|
[60] |
C. Zhang, M. Y. Li, J. Tersoff, Y. Han, Y. Su, L. J. Li, D. A. Muller, and C. K. Shih, Strain distributions and their influence on electronic structures of WSe2‒MoS2 laterally strained heterojunctions, Nat. Nanotechnol. 13(2), 152 (2018)
CrossRef
ADS
Google scholar
|
[61] |
Z. Dai, L. Liu, and Z. Zhang, 2D materials: Strain engineering of 2D materials: Issues and opportunities at the interface, Adv. Mater 31(45), 1970322 (2019)
CrossRef
ADS
Google scholar
|
[62] |
Z. Li, Y. Lv, L. Ren, J. Li, L. Kong, Y. Zeng, Q. Tao, R. Wu, H. Ma, B. Zhao, D. Wang, W. Dang, K. Chen, L. Liao, X. Duan, X. Duan, and Y. Liu, Efficient strain modulation of 2D materials via polymer encapsulation, Nat. Commun. 11(2), 1151 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |