From century-long studies to emerging frontiers: The power of light force
Chuji Wang
From century-long studies to emerging frontiers: The power of light force
[1] |
A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24(4), 156 (1970)
CrossRef
ADS
Google scholar
|
[2] |
A. Ashkin and J. Dziedzic, Optical levitation of liquid drops by radiation pressure, Science 187(4181), 1073 (1975)
CrossRef
ADS
Google scholar
|
[3] |
A. Ashkin, J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330(6150), 769 (1987)
CrossRef
ADS
Google scholar
|
[4] |
S. Chu, Laser manipulation of atoms and particles, Science 253(5022), 861 (1991)
CrossRef
ADS
Google scholar
|
[5] |
D.G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
|
[6] |
J. Stajic, E. Hand, and J. Yeston, Manipulating ultracold matter, Science 357(6355), 984 (2017)
CrossRef
ADS
Google scholar
|
[7] |
W. Crookes, On attraction and repulsion resulting from radiation, Philos. Trans. R. Soc. Lond. 164, 501 (1874)
CrossRef
ADS
Google scholar
|
[8] |
F.Rolt-Wheeler (Ed.), The Science-History of the Universe, Volume 3, New York: Current Literature Publishing Co, 1909. Image from page 52. Identifier: sciencehistoryofv3rolt
|
[9] |
K. Neuman and S. Block, Optical trapping, Rev. Sci. Instrum. 75(9), 2787 (2004)
CrossRef
ADS
Google scholar
|
[10] |
Z. Gong, Y. Pan, G. Videen, and C. Wang, Optical trapping and manipulation of single particles in air: Principles, technical details, and applications, J. Quant. Spectrosc. Radiat. Transf. 214, 94 (2018)
CrossRef
ADS
Google scholar
|
[11] |
C. Wang, L. Pan, and G. Videen, Optical trapping and laser spectroscopy measurements of single particles in air: A review, Meas. Sci. Technol. 32(10), 102005 (2021)
CrossRef
ADS
Google scholar
|
[12] |
P. Ekanayaka, C. Wang, S. C. Thakur, and E. Thomas, Trapping and actively transporting single particles of arbitrary properties in low-pressure RF plasmas with and without a magnetic field, Phys. Plasmas 31(3), 033501 (2024)
CrossRef
ADS
Google scholar
|
[13] |
L. H. Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection, Appl. Phys. Lett. 96(21), 213509 (2010)
CrossRef
ADS
Google scholar
|
[14] |
D.WolfeA. LarrazaA.Garcia, A horizontal vane radiometer: Experiment, theory, and simulation, Phys. Fluids 28(3), 037103 (2016)
|
[15] |
H. Magallanes and E. Brasselet, Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques, Nat. Photonics 12(8), 461 (2018)
CrossRef
ADS
Google scholar
|
[16] |
G. H. Chen, M. Y. Wu, and Y. Q. Li, Optical manipulation of macroscopic curved objects, Front. Phys. 20(1), 012201 (2024)
CrossRef
ADS
Google scholar
|
[17] |
A. Ketsdever, N. Gimelshein, S. Gimelshein, and N. Selden, Radiometric phenomena: From the 19th to the 21st century, Vacuum 86(11), 1644 (2012)
CrossRef
ADS
Google scholar
|
[18] |
J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. Lond. 170, 231 (1879)
CrossRef
ADS
Google scholar
|
[19] |
O. Reynolds, On certain dimensional properties of matter in the gaseous state, Philos. Trans. R. Soc. Lond. 170, 727 (1879)
|
[20] |
A. Einstein, Zur theorie der radiometrerkrafte, Eur. Phys. J. A 27(1), 1 (1924)
CrossRef
ADS
Google scholar
|
[21] |
H. Rohatschek, Direction, magnitude and causes of photophoretic forces, J. Aerosol Sci. 16(1), 29 (1985)
CrossRef
ADS
Google scholar
|
[22] |
H. Rohatschek, Semi-empirical model of photophoretic forces for the entire range of pressures, J. Aerosol Sci. 26(5), 717 (1995)
CrossRef
ADS
Google scholar
|
[23] |
H. Horvath, Photophoresis − a forgotten force, Kona 31(0), 181 (2014)
CrossRef
ADS
Google scholar
|
[24] |
T. Baier, S. Hardt, V. Shahabi, and E. Roohi, Knudsen pump inspired by Crookes radiometer with a specular wall, Phys. Rev. Fluids 2(3), 033401 (2017)
CrossRef
ADS
Google scholar
|
[25] |
N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, Area and edge effects in radiometric forces, Phys. Rev. E 79(4), 041201 (2009)
CrossRef
ADS
Google scholar
|
[26] |
N. Gimelshein, S. Gimelshein, N. Selden, and A. Ketsdever, Modeling of low-speed rarefied gas flows using a combined ES-BGK/DSMC approach, Vacuum 85(2), 115 (2010)
CrossRef
ADS
Google scholar
|
[27] |
B. M. Cornella, A. D. Ketsdever, N. E. Gimelshein, and S. F. Gimelshein, Analysis of multivane radiometer arrays in high-altitude propulsion, J. Propuls. Power 28(4), 831 (2012)
CrossRef
ADS
Google scholar
|
[28] |
M.YoungS. KeithA.Pancotti, An overview of advanced concepts for near space systems, in: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009
|
[29] |
I. Levchenko, K. Bazaka, S. Mazouffre, and S. Xu, Prospects and physical mechanisms for photonic space propulsion, Nat. Photonics 12(11), 649 (2018)
CrossRef
ADS
Google scholar
|
[30] |
B.PengB. ZhuD.DmitrievM.QinR.Zou, Radiometric propulsion: Advancing with the order-of-magnitude enhancement through graphene aerogel-coated vanes, arXiv: 2312.15592 (2023)
|
[31] |
H. Xin, Y. Li, Y. C. Liu, Y. Zhang, Y. F. Xiao, and B. Li, Optical forces: From fundamental to biological applications, Adv. Mater. 32(37), 2001994 (2020)
CrossRef
ADS
Google scholar
|
See also:
Optical manipulation of macroscopic curved objectsGui-hua Chen, Mu-ying Wu, Yong-qing Li
Frontiers of Physics. 2025, Vol.20(1): 012201
/
〈 | 〉 |