
From century-long studies to emerging frontiers: The power of light force
Chuji Wang
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 012204.
From century-long studies to emerging frontiers: The power of light force
Fig.1 The evolution of experimental designs showing radiometric force, spanning over a contrary. (I) The invention of Crookes’ radiometer in which the parts marked as A, B, and C are the coated surface, the uncoated surface, and the partial vacuum glass bulb, respectively. (II) A micromotor with curved vanes incorporating light-absorbing materials that are evenly distributed, such that the convex side absorbs more photon energy than the concave side, causing the motor to rotate in the direction of the light when it shines on the convex side. (III) Motors with curved vanes of 16 mm × 16 mm × 0.05 mm in size, designed for rapid local thermal equilibrium on both surfaces of the vanes, resulting in rotation from the convex to the concave side, regardless of which side is illuminated by the light. (I) Reproduced from Ref. [8], (II) from Ref. [13], with copyright permissions from APS, and (III) reproduced using Fig. 4 from Ref. [16] with permission. |
[1] |
A. Ashkin, Acceleration and trapping of particles by radiation pressure, Phys. Rev. Lett. 24(4), 156 (1970)
CrossRef
ADS
Google scholar
|
[2] |
A. Ashkin and J. Dziedzic, Optical levitation of liquid drops by radiation pressure, Science 187(4181), 1073 (1975)
CrossRef
ADS
Google scholar
|
[3] |
A. Ashkin, J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330(6150), 769 (1987)
CrossRef
ADS
Google scholar
|
[4] |
S. Chu, Laser manipulation of atoms and particles, Science 253(5022), 861 (1991)
CrossRef
ADS
Google scholar
|
[5] |
D. G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
|
[6] |
J. Stajic, E. Hand, and J. Yeston, Manipulating ultracold matter, Science 357(6355), 984 (2017)
CrossRef
ADS
Google scholar
|
[7] |
W. Crookes, On attraction and repulsion resulting from radiation, Philos. Trans. R. Soc. Lond. 164, 501 (1874)
CrossRef
ADS
Google scholar
|
[8] |
F. Rolt-Wheeler (Ed.), The Science-History of the Universe, Volume 3, New York: Current Literature Publishing Co, 1909. Image from page 52. Identifier: sciencehistoryofv3rolt
|
[9] |
K. Neuman and S. Block, Optical trapping, Rev. Sci. Instrum. 75(9), 2787 (2004)
CrossRef
ADS
Google scholar
|
[10] |
Z. Gong, Y. Pan, G. Videen, and C. Wang, Optical trapping and manipulation of single particles in air: Principles, technical details, and applications, J. Quant. Spectrosc. Radiat. Transf. 214, 94 (2018)
CrossRef
ADS
Google scholar
|
[11] |
C. Wang, L. Pan, and G. Videen, Optical trapping and laser spectroscopy measurements of single particles in air: A review, Meas. Sci. Technol. 32(10), 102005 (2021)
CrossRef
ADS
Google scholar
|
[12] |
P. Ekanayaka, C. Wang, S. C. Thakur, and E. Thomas, Trapping and actively transporting single particles of arbitrary properties in low-pressure RF plasmas with and without a magnetic field, Phys. Plasmas 31(3), 033501 (2024)
CrossRef
ADS
Google scholar
|
[13] |
L. H. Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection, Appl. Phys. Lett. 96(21), 213509 (2010)
CrossRef
ADS
Google scholar
|
[14] |
D. Wolfe,A. Larraza,A. Garcia, A horizontal vane radiometer: Experiment, theory, and simulation, Phys. Fluids 28(3), 037103 (2016)
|
[15] |
H. Magallanes and E. Brasselet, Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques, Nat. Photonics 12(8), 461 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[16] |
G. H. Chen, M. Y. Wu, and Y. Q. Li, Optical manipulation of macroscopic curved objects, Front. Phys. 20(1), 012201 (2024)
CrossRef
ADS
Google scholar
|
[17] |
A. Ketsdever, N. Gimelshein, S. Gimelshein, and N. Selden, Radiometric phenomena: From the 19th to the 21st century, Vacuum 86(11), 1644 (2012)
CrossRef
ADS
Google scholar
|
[18] |
J. C. Maxwell, On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. Lond. 170, 231 (1879)
CrossRef
ADS
Google scholar
|
[19] |
O. Reynolds, On certain dimensional properties of matter in the gaseous state, Philos. Trans. R. Soc. Lond. 170, 727 (1879)
|
[20] |
A. Einstein, Zur theorie der radiometrerkrafte, Eur. Phys. J. A 27(1), 1 (1924)
CrossRef
ADS
Google scholar
|
[21] |
H. Rohatschek, Direction, magnitude and causes of photophoretic forces, J. Aerosol Sci. 16(1), 29 (1985)
CrossRef
ADS
Google scholar
|
[22] |
H. Rohatschek, Semi-empirical model of photophoretic forces for the entire range of pressures, J. Aerosol Sci. 26(5), 717 (1995)
CrossRef
ADS
Google scholar
|
[23] |
H. Horvath, Photophoresis − a forgotten force, Kona 31(0), 181 (2014)
CrossRef
ADS
Google scholar
|
[24] |
T. Baier, S. Hardt, V. Shahabi, and E. Roohi, Knudsen pump inspired by Crookes radiometer with a specular wall, Phys. Rev. Fluids 2(3), 033401 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[25] |
N. Selden, C. Ngalande, S. Gimelshein, E. P. Muntz, A. Alexeenko, and A. Ketsdever, Area and edge effects in radiometric forces, Phys. Rev. E 79(4), 041201 (2009)
CrossRef
ADS
Google scholar
|
[26] |
N. Gimelshein, S. Gimelshein, N. Selden, and A. Ketsdever, Modeling of low-speed rarefied gas flows using a combined ES-BGK/DSMC approach, Vacuum 85(2), 115 (2010)
CrossRef
ADS
Google scholar
|
[27] |
B. M. Cornella, A. D. Ketsdever, N. E. Gimelshein, and S. F. Gimelshein, Analysis of multivane radiometer arrays in high-altitude propulsion, J. Propuls. Power 28(4), 831 (2012)
CrossRef
ADS
Google scholar
|
[28] |
M. Young,S. Keith,A. Pancotti, An overview of advanced concepts for near space systems, in: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2009
|
[29] |
I. Levchenko, K. Bazaka, S. Mazouffre, and S. Xu, Prospects and physical mechanisms for photonic space propulsion, Nat. Photonics 12(11), 649 (2018)
CrossRef
ADS
Google scholar
|
[30] |
B. Peng,B. Zhu,D. Dmitriev,M. Qin,R. Zou, Radiometric propulsion: Advancing with the order-of-magnitude enhancement through graphene aerogel-coated vanes, arXiv: 2312.15592 (2023)
|
[31] |
H. Xin, Y. Li, Y. C. Liu, Y. Zhang, Y. F. Xiao, and B. Li, Optical forces: From fundamental to biological applications, Adv. Mater. 32(37), 2001994 (2020)
CrossRef
ADS
Google scholar
|
See also:
Optical manipulation of macroscopic curved objectsGui-hua Chen, Mu-ying Wu, Yong-qing Li
Frontiers of Physics. 2025, Vol.20(1): 012201
/
〈 |
|
〉 |