Optical manipulation of macroscopic curved objects

Gui-hua Chen, Mu-ying Wu, Yong-qing Li

PDF(2161 KB)
PDF(2161 KB)
Front. Phys. ›› 2025, Vol. 20 ›› Issue (1) : 012201. DOI: 10.15302/frontphys.2025.012201
LETTER

Optical manipulation of macroscopic curved objects

Author information +
History +

Abstract

Laser has become a powerful tool to manipulate micro-particles and atoms by radiation pressure or photophoretic force, but its effectiveness for large objects is less noticeable. Here, we report the direct observation of unusual light-induced attractive forces that allow manipulating centimeter-sized curved absorbing objects by a light beam. This force is attributed to the radiometric effect caused by the curvature of the vane and its magnitude and temporal responses are directly measured with a pendulum. Simulations suggest that the force arises from the bending of the vane, which results in a temperature difference of gas molecules between the concave and convex sides due to unbalanced gas convection. This large force (~4.4 μN) is sufficient to rotate a motor with four curved vanes at speeds up to 600 r/min and even lifting a large vane. Manipulating macroscopic objects by light could have significant applications for solar radiation-powered near-space propulsion systems and for understanding the mechanisms of negative photophoretic forces.

Graphical abstract

Keywords

optical manipulation / radiometric force / geometry effect / unbalanced gas convection

Cite this article

Download citation ▾
Gui-hua Chen, Mu-ying Wu, Yong-qing Li. Optical manipulation of macroscopic curved objects. Front. Phys., 2025, 20(1): 012201 https://doi.org/10.15302/frontphys.2025.012201

References

[1]
A. Ashkin, J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330(6150), 769 (1987)
CrossRef ADS Google scholar
[2]
D.G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
[3]
J. Stajic, E. Hand, and J. Yeston, Manipulating ultracold matter, Science 357(6355), 984 (2017)
CrossRef ADS Google scholar
[4]
M. Wu, D. Ling, L. Ling, W. Li, and Y. Li, Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers, Sci. Rep. 7(1), 42930 (2017)
CrossRef ADS Google scholar
[5]
D.E. SmalleyE.NygaardK.Squire J.Van WagonerJ.RasmussenS.Gneiting K.QaderiJ. GoodsellW.RogersM.LindseyK.Costner A.MonkM. PearsonB.HaymoreJ.Peatross, A photophoretic-trap volumetric display, Nature 553(7689), 486 (2018)
[6]
J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force, Phys. Rev. Lett. 118(4), 043601 (2017)
CrossRef ADS Google scholar
[7]
O. Jovanovic, Photophoresis — Light induced motion of particles suspended in gas, J. Quant. Spectrosc. Radiat. Transf. 110(11), 889 (2009)
CrossRef ADS Google scholar
[8]
H. Horvath, Photophoresis — a forgotten force?, Kona 31, 181 (2014)
CrossRef ADS Google scholar
[9]
G. Chen, L. He, M. Wu, and Y. Li, Temporal dependence of photophoretic force optically induced on absorbing airborne particles by a power-modulated laser, Phys. Rev. Appl. 10(5), 054027 (2018)
CrossRef ADS Google scholar
[10]
V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Giant optical manipulation, Phys. Rev. Lett. 105(11), 118103 (2010)
CrossRef ADS Google scholar
[11]
V.ShvedovA. R. DavoyanC.HnatovskyN.EnghetaW.Krolikowski, A long-range polarization-controlled optical tractor beam, Nat. Photonics 8(11), 846 (2014)
[12]
J. Lin, A. G. Hart, and Y. Li, Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force, Appl. Phys. Lett. 106(17), 171906 (2015)
CrossRef ADS Google scholar
[13]
H. Magallanes and E. Brasselet, Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques, Nat. Photonics 12(8), 461 (2018)
CrossRef ADS Google scholar
[14]
D.WolfeA. LarrazaA.Garcia, A horizontal vane radiometer: Experiment, theory, and simulation, Phys. Fluids 28(3), 037103 (2016)
[15]
W.CrookesXV . On attraction and repulsion resulting from radiation, Philos. Trans. R. Soc. Lond. 164, 501 (1874)
[16]
W. Crookes, On repulsion resulting from radiation. Parts III & IV, Philos. Trans. R. Soc. Lond. 166, 325 (1876)
CrossRef ADS Google scholar
[17]
L. H. Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection, Appl. Phys. Lett. 96(21), 213509 (2010)
CrossRef ADS Google scholar
[18]
A. Ketsdever, N. Gimelshein, S. Gimelshein, and N. Selden, Radiometric phenomena: From the 19th to the 21st century, Vacuum 86(11), 1644 (2012)
CrossRef ADS Google scholar
[19]
M. Azadi, G. A. Popov, Z. Lu, A. G. Eskenazi, A. J. W. Bang, M. F. Campbell, H. Hu, and I. Bargatin, Controlled levitation of nanostructured thin films for sun-powered near-space flight, Sci. Adv. 7(7), eabe1127 (2021)
CrossRef ADS Google scholar
[20]
J.C. Maxwell, VII. On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. Lond. 170, 231 (1879)
[21]
O.Reynolds, XVIII. On certain dimensional properties of matter in the gaseous state, Philos. Trans. R. Soc. Lond. 170, 727 (1879)
[22]
A. Einstein, Zur Theorie der Radiometrerkrafte, Eur. Phys. J. A 27(1), 1 (1924)
CrossRef ADS Google scholar
[23]
G. W. Evan, Radiometers with curved vanes, Science ns-2(29), 215 (1883)
CrossRef ADS Google scholar
[24]
A. D. Strongrich, W. J. O’Neill, A. G. Cofer, and A. A. Alexeenko, Experimental measurements and numerical simulations of the Knudsen force on a non-uniformly heated beam, Vacuum 109, 405 (2014)
CrossRef ADS Google scholar
[25]
A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, Effect of vane thickness on radiometric force, J. Fluid Mech. 735, 684 (2013)
CrossRef ADS Google scholar
[26]
A. Passian, R. J. Warmack, T. L. Ferrell, and T. Thundat, Thermal transpiration at the microscale: a Crookes cantilever, Phys. Rev. Lett. 90(12), 124503 (2003)
CrossRef ADS Google scholar
[27]
T. Zhu, W. Ye, and J. Zhang, Negative Knudsen force on heated microbeams, Phys. Rev. E 84(5), 056316 (2011)
CrossRef ADS Google scholar
[28]
B. M. Cornella, A. D. Ketsdever, N. E. Gimelshein, and S. F. Gimelshein, Analysis of multivane radiometer arrays in high-altitude propulsion, J. Propuls. Power 28(4), 831 (2012)
CrossRef ADS Google scholar
[29]
M.YoungS. KeithA.Pancotti, An overview of advanced concepts for near space systems, in: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, American Institute of Aeronautics and Astronautics, 2009
[30]
I. Levchenko, K. Bazaka, S. Mazouffre, and S. Xu, Prospects and physical mechanisms for photonic space propulsion, Nat. Photonics 12(11), 649 (2018)
CrossRef ADS Google scholar
[31]
R. W. Bosworth and A. D. Ketsdever, Determination of the effect of particle thermal conductivity on thermophoretic force, AIP Conf. Proc. 1786, 060003 (2016)
CrossRef ADS Google scholar
[32]
S. Taguchi and K. Aoki, Motion of an array of plates in a rarefied gas caused by radiometric force, Phys. Rev. E 91(6), 063007 (2015)
CrossRef ADS Google scholar
[33]
T. Baier, S. Hardt, V. Shahabi, and E. Roohi, Knudsen pump inspired by Crookes radiometer with a specular wall, Phys. Rev. Fluids 2(3), 033401 (2017)
CrossRef ADS Google scholar
[34]
The simulation was carried out on the Tianhe-2 supercomputer system of the National Supercomputing Center in Guangzhou.
[35]
M. Scandurra, F. Iacopetti, and P. Colona, Gas kinetic forces on thin plates in the presence of thermal gradients, Phys. Rev. E 75(2), 026308 (2007)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.15302/frontphys.2025.012201.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61775036) and the high-level talents program of Dongguan University of Technology (Grant No. KCYCXPT2017003).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2161 KB)

Accesses

Citations

Detail

Sections
Recommended

/