Optical manipulation of macroscopic curved objects
Gui-hua Chen, Mu-ying Wu, Yong-qing Li
Optical manipulation of macroscopic curved objects
Laser has become a powerful tool to manipulate micro-particles and atoms by radiation pressure or photophoretic force, but its effectiveness for large objects is less noticeable. Here, we report the direct observation of unusual light-induced attractive forces that allow manipulating centimeter-sized curved absorbing objects by a light beam. This force is attributed to the radiometric effect caused by the curvature of the vane and its magnitude and temporal responses are directly measured with a pendulum. Simulations suggest that the force arises from the bending of the vane, which results in a temperature difference of gas molecules between the concave and convex sides due to unbalanced gas convection. This large force (~4.4 μN) is sufficient to rotate a motor with four curved vanes at speeds up to 600 r/min and even lifting a large vane. Manipulating macroscopic objects by light could have significant applications for solar radiation-powered near-space propulsion systems and for understanding the mechanisms of negative photophoretic forces.
optical manipulation / radiometric force / geometry effect / unbalanced gas convection
[1] |
A. Ashkin, J. M. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams, Nature 330(6150), 769 (1987)
CrossRef
ADS
Google scholar
|
[2] |
D.G. Grier, A revolution in optical manipulation, Nature 424(6950), 810 (2003)
|
[3] |
J. Stajic, E. Hand, and J. Yeston, Manipulating ultracold matter, Science 357(6355), 984 (2017)
CrossRef
ADS
Google scholar
|
[4] |
M. Wu, D. Ling, L. Ling, W. Li, and Y. Li, Stable optical trapping and sensitive characterization of nanostructures using standing-wave Raman tweezers, Sci. Rep. 7(1), 42930 (2017)
CrossRef
ADS
Google scholar
|
[5] |
D.E. SmalleyE.NygaardK.Squire J.Van WagonerJ.RasmussenS.Gneiting K.QaderiJ. GoodsellW.RogersM.LindseyK.Costner A.MonkM. PearsonB.HaymoreJ.Peatross, A photophoretic-trap volumetric display, Nature 553(7689), 486 (2018)
|
[6] |
J. Lu, H. Yang, L. Zhou, Y. Yang, S. Luo, Q. Li, and M. Qiu, Light-induced pulling and pushing by the synergic effect of optical force and photophoretic force, Phys. Rev. Lett. 118(4), 043601 (2017)
CrossRef
ADS
Google scholar
|
[7] |
O. Jovanovic, Photophoresis — Light induced motion of particles suspended in gas, J. Quant. Spectrosc. Radiat. Transf. 110(11), 889 (2009)
CrossRef
ADS
Google scholar
|
[8] |
H. Horvath, Photophoresis — a forgotten force?, Kona 31, 181 (2014)
CrossRef
ADS
Google scholar
|
[9] |
G. Chen, L. He, M. Wu, and Y. Li, Temporal dependence of photophoretic force optically induced on absorbing airborne particles by a power-modulated laser, Phys. Rev. Appl. 10(5), 054027 (2018)
CrossRef
ADS
Google scholar
|
[10] |
V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, Giant optical manipulation, Phys. Rev. Lett. 105(11), 118103 (2010)
CrossRef
ADS
Google scholar
|
[11] |
V.ShvedovA. R. DavoyanC.HnatovskyN.EnghetaW.Krolikowski, A long-range polarization-controlled optical tractor beam, Nat. Photonics 8(11), 846 (2014)
|
[12] |
J. Lin, A. G. Hart, and Y. Li, Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force, Appl. Phys. Lett. 106(17), 171906 (2015)
CrossRef
ADS
Google scholar
|
[13] |
H. Magallanes and E. Brasselet, Macroscopic direct observation of optical spin-dependent lateral forces and left-handed torques, Nat. Photonics 12(8), 461 (2018)
CrossRef
ADS
Google scholar
|
[14] |
D.WolfeA. LarrazaA.Garcia, A horizontal vane radiometer: Experiment, theory, and simulation, Phys. Fluids 28(3), 037103 (2016)
|
[15] |
W.CrookesXV
|
[16] |
W. Crookes, On repulsion resulting from radiation. Parts III & IV, Philos. Trans. R. Soc. Lond. 166, 325 (1876)
CrossRef
ADS
Google scholar
|
[17] |
L. H. Han, S. Wu, J. C. Condit, N. J. Kemp, T. E. Milner, M. D. Feldman, and S. Chen, Light-powered micromotor driven by geometry-assisted, asymmetric photon-heating and subsequent gas convection, Appl. Phys. Lett. 96(21), 213509 (2010)
CrossRef
ADS
Google scholar
|
[18] |
A. Ketsdever, N. Gimelshein, S. Gimelshein, and N. Selden, Radiometric phenomena: From the 19th to the 21st century, Vacuum 86(11), 1644 (2012)
CrossRef
ADS
Google scholar
|
[19] |
M. Azadi, G. A. Popov, Z. Lu, A. G. Eskenazi, A. J. W. Bang, M. F. Campbell, H. Hu, and I. Bargatin, Controlled levitation of nanostructured thin films for sun-powered near-space flight, Sci. Adv. 7(7), eabe1127 (2021)
CrossRef
ADS
Google scholar
|
[20] |
J.C. Maxwell, VII. On stresses in rarified gases arising from inequalities of temperature, Philos. Trans. R. Soc. Lond. 170, 231 (1879)
|
[21] |
O.Reynolds, XVIII. On certain dimensional properties of matter in the gaseous state, Philos. Trans. R. Soc. Lond. 170, 727 (1879)
|
[22] |
A. Einstein, Zur Theorie der Radiometrerkrafte, Eur. Phys. J. A 27(1), 1 (1924)
CrossRef
ADS
Google scholar
|
[23] |
G. W. Evan, Radiometers with curved vanes, Science ns-2(29), 215 (1883)
CrossRef
ADS
Google scholar
|
[24] |
A. D. Strongrich, W. J. O’Neill, A. G. Cofer, and A. A. Alexeenko, Experimental measurements and numerical simulations of the Knudsen force on a non-uniformly heated beam, Vacuum 109, 405 (2014)
CrossRef
ADS
Google scholar
|
[25] |
A. Ventura, N. Gimelshein, S. Gimelshein, and A. Ketsdever, Effect of vane thickness on radiometric force, J. Fluid Mech. 735, 684 (2013)
CrossRef
ADS
Google scholar
|
[26] |
A. Passian, R. J. Warmack, T. L. Ferrell, and T. Thundat, Thermal transpiration at the microscale: a Crookes cantilever, Phys. Rev. Lett. 90(12), 124503 (2003)
CrossRef
ADS
Google scholar
|
[27] |
T. Zhu, W. Ye, and J. Zhang, Negative Knudsen force on heated microbeams, Phys. Rev. E 84(5), 056316 (2011)
CrossRef
ADS
Google scholar
|
[28] |
B. M. Cornella, A. D. Ketsdever, N. E. Gimelshein, and S. F. Gimelshein, Analysis of multivane radiometer arrays in high-altitude propulsion, J. Propuls. Power 28(4), 831 (2012)
CrossRef
ADS
Google scholar
|
[29] |
M.YoungS. KeithA.Pancotti, An overview of advanced concepts for near space systems, in: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, American Institute of Aeronautics and Astronautics, 2009
|
[30] |
I. Levchenko, K. Bazaka, S. Mazouffre, and S. Xu, Prospects and physical mechanisms for photonic space propulsion, Nat. Photonics 12(11), 649 (2018)
CrossRef
ADS
Google scholar
|
[31] |
R. W. Bosworth and A. D. Ketsdever, Determination of the effect of particle thermal conductivity on thermophoretic force, AIP Conf. Proc. 1786, 060003 (2016)
CrossRef
ADS
Google scholar
|
[32] |
S. Taguchi and K. Aoki, Motion of an array of plates in a rarefied gas caused by radiometric force, Phys. Rev. E 91(6), 063007 (2015)
CrossRef
ADS
Google scholar
|
[33] |
T. Baier, S. Hardt, V. Shahabi, and E. Roohi, Knudsen pump inspired by Crookes radiometer with a specular wall, Phys. Rev. Fluids 2(3), 033401 (2017)
CrossRef
ADS
Google scholar
|
[34] |
The simulation was carried out on the Tianhe-2 supercomputer system of the National Supercomputing Center in Guangzhou.
|
[35] |
M. Scandurra, F. Iacopetti, and P. Colona, Gas kinetic forces on thin plates in the presence of thermal gradients, Phys. Rev. E 75(2), 026308 (2007)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |