First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties
Yi Ding, Yanli Wang
First-principles investigation of two-dimensional iron molybdenum nitride: A double transition-metal cousin of MoSi2N4(MoN) monolayer with distinctive electronic and topological properties
As the homologous compounds of MoSi2N4, the MoSi2N4(MoN)n monolayers have been synthesized in a recent experiment. These systems consist of homogeneous metal nitride multilayers sandwiched between two SiN surfaces, which extends the septuple-atomic-layer MSi2N4 system to ultra-thick MSi2N4(MN)n forms. In this paper, we perform a first-principles study on the MoSi2N4(FeN) monolayer, which is constructed by iron molybdenum nitride intercalated into the SiN layers. As a cousin of MoSi2N4(MoN), this double transition-metal system exhibits robust structural stability from the energetic, mechanical, dynamical and thermal perspectives. Different from the MoSi2N4(MoN) one, the MoSi2N4(FeN) monolayer possesses intrinsic ferromagnetism and presents a bipolar magnetic semiconducting behaviour. The ferromagnetism can be further enhanced by the surface hydrogenation, which raises the Curie temperature to 310 K around room temperature. More interestingly, the hydrogenated MoSi2N4(FeN) monolayer exhibits a quantum anomalous Hall (QAH) insulating behaviour with a sizeable nontrivial band gap of 0.23 eV. The nontrivial topological character can be well described by a two-band model, confirming a non-zero Chern number of . Similar bipolar magnetic semiconducting feature and hydrogenation-induced QAH state are also present in the WSi2N4(FeN) monolayer. Our study demonstrates that the double transition-metal MSi2N4() system will be a fertile platform to achieve fascinating spintronic and topological properties.
quantum anomalous Hall state / MA2Z4(M′Z) family / first-principles / double transition-metal nitride
[1] |
Y. L. Hong, Z. Liu, L. Wang, T. Zhou, W. Ma, C. Xu, S. Feng, L. Chen, M. L. Chen, D. M. Sun, X. Q. Chen, H. M. Cheng, and W. Ren, Chemical vapor deposition of layered two-dimensional MoSi2N4 materials, Science 369(6504), 670 (2020)
CrossRef
ADS
Google scholar
|
[2] |
Y. Yin, Q. Gong, M. Yi, and W. Guo, Emerging versatile two-dimensional MoSi2N4 family, Adv. Funct. Mater. 33(26), 2214050 (2023)
CrossRef
ADS
Google scholar
|
[3] |
C.C. ThoS. D. GuoS.J. LiangW.L. OngC.S. Lau L.CaoG. WangY.S. Ang, MA2Z4 family heterostructures: Promises and prospects, Appl. Phys. Rev. 10(4), 041307 (2023)
|
[4] |
D. Huang, F. Liang, R. Guo, D. Lu, J. Wang, H. Yu, and H. Zhang, MoSi2N4: A 2D regime with strong exciton–phonon coupling, Adv. Opt. Mater. 10(9), 2102612 (2022)
CrossRef
ADS
Google scholar
|
[5] |
K. S. Novoselov, Discovery of 2D van der Waals layered MoSi2N4 family, Natl. Sci. Rev. 7(12), 1842 (2020)
CrossRef
ADS
Google scholar
|
[6] |
B. Mortazavi, B. Javvaji, F. Shojaei, T. Rabczuk, A. V. Shapeev, and X. Zhuang, Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles, Nano Energy 82, 105716 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[7] |
S. Li, W. Wu, X. Feng, S. Guan, W. Feng, Y. Yao, and S. A. Yang, Valley-dependent properties of monolayer MoSi2N4, WSi2N4, and MoSi2As4, Phys. Rev. B 102(23), 235435 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[8] |
C. Yang, Z. Song, X. Sun, and J. Lu, Valley pseudospin in monolayer MoSi2N4 and MoSi2As4, Phys. Rev. B 103(3), 035308 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[9] |
Y. Wu, Z. Tang, W. Xia, W. Gao, F. Jia, Y. Zhang, W. Zhu, W. Zhang, and P. Zhang, Prediction of protected band edge states and dielectric tunable quasiparticle and excitonic properties of monolayer MoSi2N4, npj Comput. Mater. 8(1), 129 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[10] |
J. Yu, J. Zhou, X. Wan, and Q. Li, High intrinsic lattice thermal conductivity in monolayer MoSi2N4, New J. Phys. 23(3), 033005 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[11] |
X. Wang, W. Ju, D. Wang, X. Li, and J. Wan, Flexible MA2Z4 (M = Mo, W; A = Si, Ge and Z = N, P, As) monolayers with outstanding mechanical, dynamical, electronic, and piezoelectric properties and anomalous dynamic polarization, Phys. Chem. Chem. Phys. 25(27), 18247 (2023)
CrossRef
ADS
Google scholar
|
[12] |
A. Priydarshi, Y. S. Chauhan, S. Bhowmick, and A. Agarwal, Large and anisotropic carrier mobility in monolayers of the MA2Z4 series (M = Cr, Mo, W; A = Si, Ge; and Z = N, P), Nanoscale 14(33), 11988 (2022)
CrossRef
ADS
Google scholar
|
[13] |
L. Wang, Y. Shi, M. Liu, A. Zhang, Y. L. Hong, R. Li, Q. Gao, M. Chen, W. Ren, H. M. Cheng, Y. Li, and X. Q. Chen, Intercalated architecture of MA2Z4 family layered van der Waals materials with emerging topological, magnetic and superconducting properties, Nat. Commun. 12(1), 2361 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[14] |
Y. Ding and Y. Wang, Computational exploration of stable 4d/5d transition-metal MSi2N4 (M = Y−Cd and Hf−Hg) nanosheets and their versatile electronic and magnetic properties, J. Phys. Chem. C 125(35), 19580 (2021)
CrossRef
ADS
Google scholar
|
[15] |
Y. T. Ren, L. Hu, Y. T. Chen, Y. J. Hu, J. L. Wang, P. L. Gong, H. Zhang, L. Huang, and X. Q. Shi, Two-dimensional MSi2N4 monolayers and van der Waals heterostructures: Promising spintronic properties and band alignments, Phys. Rev. Mater. 6(6), 064006 (2022)
CrossRef
ADS
Google scholar
|
[16] |
Y. Wang, D. Legut, X. Liu, Y. Li, C. Li, Y. Sun, R. Zhang, and Q. Zhang, Mott transition and superexchange mechanism in magnetically doped XSi2N4 caused by large 3d orbital onsite coulomb interaction, Phys. Rev. B 106(10), 104421 (2022)
CrossRef
ADS
Google scholar
|
[17] |
Z. An, L. Lv, Y. Su, Y. Jiang, and Z. Guan, Carrier doping modulates the magnetoelectronic and magnetic anisotropic properties of two-dimensional MSi2N4 (M = Cr, Mn, Fe, and Co) monolayers, Phys. Chem. Chem. Phys. 26(5), 4208 (2024)
CrossRef
ADS
Google scholar
|
[18] |
Q. Cui, Y. Zhu, J. Liang, P. Cui, and H. Yang, Spin-valley coupling in a two-dimensional VSi2N4 monolayer, Phys. Rev. B 103(8), 085421 (2021)
CrossRef
ADS
Google scholar
|
[19] |
S. Li, Q. Wang, C. Zhang, P. Guo, and S. A. Yang, Correlation-driven topological and valley states in monolayer VSi2P4, Phys. Rev. B 104(8), 085149 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[20] |
Y. Wang and Y. Ding, Switchable valley polarization and quantum anomalous Hall state in the VN2X2Y2 nanosheets (X = group-III and Y = group-VI elements), Appl. Phys. Lett. 119(19), 193101 (2021)
CrossRef
ADS
Google scholar
|
[21] |
P. Liu, S. Liu, M. Jia, H. Yin, G. Zhang, F. Ren, B. Wang, and C. Liu, Strain-driven valley states and phase transitions in Janus VSiGeN4 monolayer, Appl. Phys. Lett. 121(6), 063103 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[22] |
P. Li, X. Yang, Q. S. Jiang, Y. Z. Wu, and W. Xun, Built-in electric field and strain tunable valley-related multiple topological phase transitions in VSiXN4 (X = C, Si, Ge, Sn, Pb) monolayers, Phys. Rev. Mater. 7(6), 064002 (2023)
CrossRef
ADS
Google scholar
|
[23] |
K. Jia, X. J. Dong, S. S. Li, W. X. Ji, and C. W. Zhang, Strain-engineering induced topological phase transitions and multiple valley states in Janus monolayer VCSiN4, J. Mater. Chem. C 11(30), 10359 (2023)
CrossRef
ADS
Google scholar
|
[24] |
Z. Gao, Y. He, and K. Xiong, Two-dimensional Janus SVAN2 (A = Si, Ge) monolayers with intrinsic semiconductor character and room temperature ferromagnetism: Tunable electronic properties via strain and an electric field, Dalton Trans. 52(46), 17416 (2023)
CrossRef
ADS
Google scholar
|
[25] |
X. Zhou, R. W. Zhang, Z. Zhang, W. Feng, Y. Mokrousov, and Y. Yao, Sign-reversible valley-dependent berry phase effects in 2D valley-half-semiconductors, npj Comput. Mater. 7(1), 160 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[26] |
C. Z. Chang, C. X. Liu, and A. H. MacDonald, Colloquium: Quantum anomalous Hall effect, Rev. Mod. Phys. 95(1), 011002 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[27] |
K. Wang, Y. Li, H. Mei, P. Li, and Z. X. Guo, Quantum anomalous Hall and valley quantum anomalous Hall effects in two-dimensional d0 orbital XY monolayers, Phys. Rev. Mater. 6(4), 044202 (2022)
CrossRef
ADS
Google scholar
|
[28] |
P. Li, Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect, Phys. Chem. Chem. Phys. 21(12), 6712 (2019)
CrossRef
ADS
Google scholar
|
[29] |
H. P. Wang, W. Luo, and H. J. Xiang, Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides, Phys. Rev. B 95(12), 125430 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[30] |
P. Li, X. Li, W. Zhao, H. Chen, M. X. Chen, Z. X. Guo, J. Feng, X. G. Gong, and A. H. MacDonald, Topological Dirac states beyond π-orbitals for silicene on SiC(0001) surface, Nano Lett. 17(10), 6195 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[31] |
Y. Ding and Y. Wang, Two-dimensional T′ MA 2N4 (M = Mo/W, A = Si/Ge) nanosheets: First-principles insights into the structural stability, electronic property and catalytic performance for hydrogen evolution reaction, Appl. Surf. Sci. 627, 157256 (2023)
CrossRef
ADS
Google scholar
|
[32] |
R. Islam, R. Verma, B. Ghosh, Z. Muhammad, A. Bansil, C. Autieri, and B. Singh, Switchable large-gap quantum spin Hall state in the two-dimensional MSi2Z4 class of materials, Phys. Rev. B 106(24), 245149 (2022)
CrossRef
ADS
arXiv
Google scholar
|
[33] |
R. Islam, G. Hussain, R. Verma, M. S. Talezadehlari, Z. Muhammad, B. Singh, and C. Autieri, Fast electrically switchable large gap quantum spin Hall states in MGe2Z4, Adv. Electron. Mater. 9(8), 2300156 (2023)
CrossRef
ADS
arXiv
Google scholar
|
[34] |
X. Wei, B. Zhao, J. Zhang, Y. Xue, Y. Li, and Z. Yang, Chern insulators without band inversion in MoS2 monolayers with 3d adatoms, Phys. Rev. B 95(7), 075419 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[35] |
X. Deng, H. Yang, S. Qi, X. Xu, and Z. Qiao, Quantum anomalous Hall effect and giant Rashba spin‒orbit splitting in graphene system Co-doped with boron and 5d transition-metal atoms, Front. Phys. 13(5), 137308 (2018)
CrossRef
ADS
Google scholar
|
[36] |
M. A. Abdelati, A. A. Maarouf, and M. M. Fadlallah, Substitutional transition metal doping in MoSi2N4 monolayer: Structural, electronic and magnetic properties, Phys. Chem. Chem. Phys. 24(5), 3035 (2022)
CrossRef
ADS
Google scholar
|
[37] |
Y. Wang, G. Wang, M. Huang, Z. Luo, J. Wang, Z. Ding, X. Guo, and X. Liu, Electrocatalytic activity of MoSi2N4 monolayers decorated with single transition metal atoms: A computational study, Nanotechnology 34(24), 245705 (2023)
CrossRef
ADS
Google scholar
|
[38] |
Z. Liu, L. Wang, Y. L. Hong, X. Q. Chen, H. M. Cheng, and W. Ren, Two-dimensional superconducting MoSi2N4(MoN)4n homologous compounds, Natl. Sci. Rev. 10(4), nwac273 (2023)
CrossRef
ADS
Google scholar
|
[39] |
Y. Wang and Y. Ding, Large-gap quantum spin hall state in double-transition-metal homologous compounds of WSi2N4: A first-principles study, Phys. Status Solidi Rapid Res. Lett. 18(3), 2300376 (2024)
CrossRef
ADS
Google scholar
|
[40] |
A. Miura, K. Tadanaga, E. Magome, C. Moriyoshi, Y. Kuroiwa, T. Takahiro, N. Kumada, and Octahedral coordination preferences in Nb-, Ta-, and W-based ABX2 layered oxides, oxynitrides, and nitrides, J. Solid State Chem. 229, 272 (2015)
CrossRef
ADS
Google scholar
|
[41] |
E. Enriquez, Y. Zhang, A. Chen, Z. Bi, Y. Wang, E. Fu, Z. Harrell, X. Lu, P. Dowden, H. Wang, C. Chen, and Q. Jia, Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition, Appl. Phys. Lett. 109(8), 081907 (2016)
CrossRef
ADS
Google scholar
|
[42] |
G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[43] |
G. C. Moore, M. K. Horton, E. Linscott, A. M. Ganose, M. Siron, D. D. O’Regan, and K. A. Persson, High-throughput determination of Hubbard U and Hund J values for transition metal oxides via the linear response formalism, Phys. Rev. Mater. 8(1), 014409 (2024)
CrossRef
ADS
Google scholar
|
[44] |
R. Panda and N. Gajbhiye, Chemical synthesis and magnetic properties of nanocrystalline FeMoN2, J. Cryst. Growth 191(1−2), 92 (1998)
CrossRef
ADS
Google scholar
|
[45] |
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef
ADS
Google scholar
|
[46] |
F. Mouhat and F. M. C. X. Coudert, Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B 90(22), 224104 (2014)
CrossRef
ADS
arXiv
Google scholar
|
[47] |
X. Li, X. Wu, and J. Yang, Half-metallicity in MnPSe3 exfoliated nanosheet with carrier doping, J. Am. Chem. Soc. 136(31), 11065 (2014)
CrossRef
ADS
Google scholar
|
[48] |
C. C. Tho, X. Feng, L. Cao, G. Wang, S. J. Liang, C. S. Lau, S. D. Guo, and Y. S. Ang, Ultrathick MA2N4(M′ N) intercalated monolayers with sublayer-protected Fermi surface conduction states: Interconnect and metal contact applications, Adv. Phys. Res. 2300156, 2300156 (2024)
CrossRef
ADS
Google scholar
|
[49] |
J. B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La,m(II)]MnO3, Phys. Rev. 100(2), 564 (1955)
CrossRef
ADS
Google scholar
|
[50] |
Y. Wang, X. Xu, W. Ji, S. Li, Y. Li, and X. Zhao, Exploitable magnetic anisotropy and half-metallicity controls in multiferroic van der Waals heterostructure, npj Comput. Mater. 9(1), 223 (2023)
CrossRef
ADS
Google scholar
|
[51] |
C. Liu, G. Zhao, T. Hu, Y. Chen, S. Cao, L. Bellaiche, and W. Ren, Jahn‒Teller effect, and orbital order in the two-dimensional monolayer perovskite Rb2CuCl4, Phys. Rev. B 104, L241105 (2021)
CrossRef
ADS
Google scholar
|
[52] |
M. R. K. Akanda and R. K. Lake, Magnetic properties of NbSi2N4, VSi2N4, and VSi2P4 monolayers, Appl. Phys. Lett. 119(5), 052402 (2021)
CrossRef
ADS
arXiv
Google scholar
|
[53] |
T. M. Henderson, J. Paier, and G. E. Scuseria, Accurate treatment of solids with the HSE screened hybrid, Phys. Status Solidi B 248(4), 767 (2011)
CrossRef
ADS
Google scholar
|
[54] |
J.LiX.Li J.Yang, A review of bipolar magnetic semiconductors from theoretical aspects, Fund. Res. 2(4), 511 (2022)
|
[55] |
T. A. Manz and N. G. Limas, Introducing ddec6 atomic population analysis. Part 1. Charge partitioning theory and methodology, RSC Adv. 6(53), 47771 (2016)
CrossRef
ADS
Google scholar
|
[56] |
A. S. Botana and M. R. Norman, Electronic structure and magnetism of transition metal dihalides: Bulk to monolayer, Phys. Rev. Mater. 3(4), 044001 (2019)
CrossRef
ADS
arXiv
Google scholar
|
[57] |
T. Barnowsky, S. Curtarolo, A. V. Krasheninnikov, T. Heine, and R. Friedrich, Magnetic state control of non-van der Waals 2D materials by hydrogenation, Nano Lett. 24(13), 3874 (2024)
CrossRef
ADS
arXiv
Google scholar
|
[58] |
K. Wang, K. Ren, Y. Hou, Y. Cheng, and G. Zhang, Physical insights into enhancing magnetic stability of 2D magnets, J. Appl. Phys. 133(11), 110902 (2023)
CrossRef
ADS
Google scholar
|
[59] |
Y. Wang and Y. Ding, Tunable structural phases and electronic properties of group V MSi2N4 (M = V, Nb, Ta) nanosheets via surface hydrogenation: A first-principles study, J. Mater. Chem. C 11(48), 17034 (2023)
CrossRef
ADS
Google scholar
|
[60] |
Y. Wu, L. Deng, J. Tong, X. Yin, F. Tian, G. Qin, and X. Zhang, Ferrovalley and topological phase transition behavior in monolayer Ru(OH)2, J. Mater. Chem. C 11(40), 13714 (2023)
CrossRef
ADS
Google scholar
|
[61] |
X. Zhang, Q. Lu, W. Liu, W. Niu, J. Sun, J. Cook, M. Vaninger, P. F. Miceli, D. J. Singh, S. W. Lian, T. R. Chang, X. He, J. Du, L. He, R. Zhang, G. Bian, and Y. Xu, Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films, Nat. Commun. 12(1), 2492 (2021)
CrossRef
ADS
Google scholar
|
[62] |
H. R. Fuh, C. R. Chang, Y. K. Wang, R. F. L. Evans, R. W. Chantrell, and H. T. Jeng, New type single-layer magnetic semiconductor in transition-metal dichalcogenides VX2 (X = S, Se and Te), Sci. Rep. 6(1), 32625 (2016)
CrossRef
ADS
Google scholar
|
[63] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[64] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
arXiv
Google scholar
|
[65] |
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef
ADS
arXiv
Google scholar
|
[66] |
J. Gong, G. Ding, C. Xie, W. Wang, Y. Liu, G. Zhang, and X. Wang, Genuine Dirac half-metals in two-dimensions, Adv. Sci. 11, 2307297 (2024)
CrossRef
ADS
Google scholar
|
[67] |
X. Wang, X. P. Li, J. Li, C. Xie, J. Wang, H. Yuan, W. Wang, Z. Cheng, Z. M. Yu, and G. Zhang, Magnetic second-order topological insulator: An experimentally feasible 2D CrSiTe3, Adv. Funct. Mater. 33(49), 2304499 (2023)
CrossRef
ADS
Google scholar
|
[68] |
Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. S. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
CrossRef
ADS
Google scholar
|
[69] |
Y. Yao and Z. Fang, Sign changes of intrinsic spin Hall effect in semiconductors and simple metals: First-principles calculations, Phys. Rev. Lett. 95(15), 156601 (2005)
CrossRef
ADS
Google scholar
|
[70] |
S. J. Zhang, C. W. Zhang, S. F. Zhang, W. X. Ji, P. Li, P. J. Wang, S. S. Li, and S. S. Yan, Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice, Phys. Rev. B 96(20), 205433 (2017)
CrossRef
ADS
Google scholar
|
[71] |
X. Zhu, Y. Chen, Z. Liu, Y. Han, and Z. Qiao, Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. 18(2), 23302 (2023)
CrossRef
ADS
Google scholar
|
[72] |
X. Kong, L. Li, L. Liang, F. M. Peeters, and X. J. Liu, The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX2 (X = Cl, Br, I) monolayers, Appl. Phys. Lett. 116(19), 192404 (2020)
CrossRef
ADS
arXiv
Google scholar
|
[73] |
H. Sun, S. S. Li, W. X. Ji, and C. W. Zhang, Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr, Phys. Rev. B 105(19), 195112 (2022)
CrossRef
ADS
Google scholar
|
[74] |
Q. F. Liang, R. Yu, J. Zhou, and X. Hu, Topological states of non-Dirac electrons on a triangular lattice, Phys. Rev. B 93(3), 035135 (2016)
CrossRef
ADS
arXiv
Google scholar
|
[75] |
C. Si, K. H. Jin, J. Zhou, Z. Sun, and F. Liu, Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice, Nano Lett. 16(10), 6584 (2016)
CrossRef
ADS
Google scholar
|
[76] |
Z. Zhang, L. Zhao, and J. Shi, Mechanics and strategies for wrinkling suppression: A review, Front. Mech. Eng. 8, 910415 (2022)
CrossRef
ADS
Google scholar
|
[77] |
S. Yang, Y. Chen, and C. Jiang, Strain engineering of two-dimensional materials: Methods, properties, and applications, InfoMat 3(4), 397 (2021)
CrossRef
ADS
Google scholar
|
[78] |
J. Wang, L. He, Y. Zhang, H. Nong, S. Li, Q. Wu, J. Tan, and B. Liu, Locally strained 2D materials: Preparation, properties, and applications, Adv. Mater. 36(23), 2314145 (2024)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |