Generation and characterization of customized Laguerre−Gaussian beams with arbitrary profiles

Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li

PDF(2718 KB)
PDF(2718 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 42205. DOI: 10.1007/s11467-024-1426-3
RESEARCH ARTICLE

Generation and characterization of customized Laguerre−Gaussian beams with arbitrary profiles

Author information +
History +

Abstract

We experimentally demonstrate the generation of customized Laguerre−Gaussian (LG) beams whose intensity maxima are localized around any desired curves. The principle is to act with appropriate algebraic functions on the angular spectra of LG beams. We characterize the propagation properties of these beams and compare them with non-diffraction caustic beams possessing the same intensity profiles. The results manifest that the customized-LG beams can maintain their profiles during propagation and suffer less energy loss than the non-diffraction caustic beams, and hence are able to propagate a longer distance. Moreover, the customized-LG beam exhibits self-healing ability when parts of their bodies are blocked. This new structure beam has potential applications in areas such as optical communication, soliton routing and steering, and optical tweezing.

Graphical abstract

Keywords

light manipulation / wave propagation / invariant optical fields

Cite this article

Download citation ▾
Chengyuan Wang, Yun Chen, Jinwen Wang, Xin Yang, Hong Gao, Fuli Li. Generation and characterization of customized Laguerre−Gaussian beams with arbitrary profiles. Front. Phys., 2024, 19(4): 42205 https://doi.org/10.1007/s11467-024-1426-3

References

[1]
H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, E. Karimi, L. Marrucci, M. Padgett, M. Ritsch-Marte, N. M. Litchinitser, N. P. Bigelow, C. Rosales-Guzmán, A. Belmonte, J. P. Torres, T. W. Neely, M. Baker, R. Gordon, A. B. Stilgoe, J. Romero, A. G. White, R. Fickler, A. E. Willner, G. Xie, B. McMorran, A. M. Weiner. Roadmap on structured light. J. Opt., 2016, 19(1): 013001
CrossRef ADS Google scholar
[2]
A. Forbes, M. de Oliveira, M. R. Dennis. Structured light. Nat. Photonics, 2021, 15(4): 253
CrossRef ADS Google scholar
[3]
A. Hansen, T. Justin, Schultz P Bigelow. Singular atom optics with spinor Bose–Einstein condensates. Optica, 2016, 3(4): 355
CrossRef ADS Google scholar
[4]
Y. Yang, Y. Ren, M. Chen, Y. Arita, C. Rosales-Guzmán. Optical trapping with structured light: A review. Adv. Photonics, 2021, 3(3): 034001
CrossRef ADS Google scholar
[5]
E. Otte, C. Denz. Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev., 2020, 7(4): 041308
CrossRef ADS Google scholar
[6]
J. Baumgartl, M. Mazilu, K. Dholakia. Optically mediated particle clearing using airy wavepackets. Nat. Photonics, 2008, 2(11): 675
CrossRef ADS Google scholar
[7]
A. Forbes, M. de Oliveira, M. R. Dennis. Light-sheet microscopy using an airy beam. Nat. Methods, 2014, 11(5): 541
CrossRef ADS Google scholar
[8]
J. P. Torres. Multiplexing twisted light. Nat. Photonics, 2012, 6(7): 420
CrossRef ADS Google scholar
[9]
A. E. Willner, K. Pang, H. Song, K. Zou, H. Zhou. Orbital angular momentum of light for communications. Appl. Phys. Rev., 2021, 8(4): 041312
CrossRef ADS Google scholar
[10]
J. Wang, F. Castellucci, S. Franke-Arnold. Vectorial light–matter interaction: Exploring spatially structured complex light fields. AVS Quantum Sci., 2020, 2(3): 031702
CrossRef ADS Google scholar
[11]
Z. K. Wu, H. Guo, W. Wang, Y. Z. Gu. Evolution of finite energy airy beams in cubic–quintic atomic vapor system. Front. Phys., 2018, 13(1): 134201
CrossRef ADS Google scholar
[12]
F. Niu, H. Zhang, J. Yuan, L. Xiao, S. Jia, L. Wang. Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles. Front. Phys., 2023, 18(5): 52304
CrossRef ADS Google scholar
[13]
C. Wang, Y. Yu, Y. Chen, M. Cao, J. Wang, X. Yang, S. Qiu, D. Wei, H. Gao, F. Li. Efficient quantum memory of orbital angular momentum qubits in cold atoms. Quantum Sci. Technol., 2021, 6(4): 045008
CrossRef ADS Google scholar
[14]
Y. Chen, J. Wang, C. Wang, S. Zhang, M. Cao, S. Franke-Arnold, H. Gao, F. Li. Phase gradient protection of stored spatially multimode perfect optical vortex beams in a diffused rubidium vapor. Opt. Express, 2021, 29(20): 31582
CrossRef ADS Google scholar
[15]
C. Wang, Y. Chen, Z. Jiang, Y. Yu, M. Cao, D. Wei, H. Gao, F. Li. Experimental investigation of light storage of diffraction-free and quasi-diffraction-free beams in hot atomic gas cell. Front. Phys., 2022, 17(2): 22503
CrossRef ADS Google scholar
[16]
Y. Wang, Y. Chen, Y. Zhang, H. Chen, S. Yu. Generalised Hermite–Gaussian beams and mode transformations. J. Opt., 2016, 18(5): 055001
CrossRef ADS Google scholar
[17]
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
CrossRef ADS Google scholar
[18]
M. A. Bandres, J. C. Gutiérrez-Vega. Ince–Gaussian beams. Opt. Lett., 2004, 29(2): 144
CrossRef ADS Google scholar
[19]
Y. Yu, Y. Chen, C. Wang, J. Wang, Z. Sun, M. Cao, H. Gao, F. Li. Optical storage of Ince–Gaussian modes in warm atomic vapor. Opt. Lett., 2021, 46(5): 1021
CrossRef ADS Google scholar
[20]
J. Durnin, J. J. Miceli, J. H. Eberly. Diffraction-free beams. Phys. Rev. Lett., 1987, 58(15): 1499
CrossRef ADS Google scholar
[21]
M. McLaren, M. Agnew, J. Leach, F. S. Roux, M. J. Padgett, R. W. Boyd, A. Forbes. Entangled Bessel–Gaussian beams. Opt. Express, 2012, 20(21): 23589
CrossRef ADS Google scholar
[22]
X. Chu, Q. Sun, J. Wang, P. Lü, W. Xie, X. Xu. Generating a Bessel–Gaussian beam for the application in optical engineering. Sci. Rep., 2015, 5(1): 18665
CrossRef ADS Google scholar
[23]
Z. Zhi, Q. Na, Q. Xie, B. Chen, Y. Li, X. Liu, X. Li, L. Wang, G. Lo, J. Song. On-chip generation of Bessel–Gaussian beam via concentrically distributed grating arrays for long-range sensing. Light Sci. Appl., 2023, 12(1): 92
CrossRef ADS Google scholar
[24]
J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, S. Chávez-Cerda. Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett., 2000, 25(20): 1493
CrossRef ADS Google scholar
[25]
M. A. Bandres, J. C. Gutiérrez-Vega, S. Chávez-Cerda. Parabolic nondiffracting optical wave fields. Opt. Lett., 2004, 29(1): 44
CrossRef ADS Google scholar
[26]
P. A. Sanchez-Serrano, D. Wong-Campos, S. Lopez-Aguayo, J. C. Gutiérrez-Vega. Engineering of nondiffracting beams with genetic algorithms. Opt. Lett., 2012, 37(24): 5040
CrossRef ADS Google scholar
[27]
S. López-Aguayo, Y. V. Kartashov, V. A. Vysloukh, L. Torner. Method to generate complex quasinondiffracting optical lattices. Phys. Rev. Lett., 2010, 105(1): 013902
CrossRef ADS Google scholar
[28]
W. Yan, Y. Gao, Z. Yuan, Z. Wang, Z. C. Ren, X. L. Wang, J. Ding, H. T. Wang. Non-diffracting and self-accelerating Bessel beams with on-demand tailored intensity profiles along arbitrary trajectories. Opt. Lett., 2021, 46(7): 1494
CrossRef ADS Google scholar
[29]
E. Abramochkin, V. Volostnikov. Spiral-type beams. Opt. Commun., 1993, 102(3-4): 336
CrossRef ADS Google scholar
[30]
E. Abramochkin, V. Volostnikov. Spiral-type beams: Optical and quantum aspects. Opt. Commun., 1996, 125(4-6): 302
CrossRef ADS Google scholar
[31]
A. Volyar, Y. Akimova. Structural stability of spiral vortex beams to sector perturbations. Appl. Opt., 2021, 60(28): 8865
CrossRef ADS Google scholar
[32]
A. Zannotti, C. Denz, M. A. Alonso, M. R. Dennis. Shaping caustics into propagation-invariant light. Nat. Commun., 2020, 11(1): 3597
CrossRef ADS Google scholar
[33]
J. Mendoza-Hernández. Customizing structured light beams with a differential operator. Opt. Lett., 2021, 46(20): 5232
CrossRef ADS Google scholar
[34]
I. Martinez-Castellanos, J. C. Gutiérrez-Vega. Shaping optical beams with non-integer orbital-angular momentum: A generalized differential operator approach. Opt. Lett., 2015, 40(8): 1764
CrossRef ADS Google scholar
[35]
J. Mendoza-Hernández, M. Szatkowski, M. F. Ferrer-Garcia, J. C. Gutiérrez-Vega, D. Lopez-Mago. Generation of light beams with custom orbital angular momentum and tunable transverse intensity symmetries. Opt. Express, 2019, 27(18): 26155
CrossRef ADS Google scholar
[36]
T. Čižmár, K. Dholakia. Tunable Bessel light modes: Engineering the axial propagation. Opt. Express, 2009, 17(18): 15558
CrossRef ADS Google scholar
[37]
J. Mendoza-Hernández, M. L. Arroyo-Carrasco, M. D. Iturbe-Castillo, S. Chávez-Cerda. Laguerre–Gauss beams versus Bessel beams showdown: Peer comparison. Opt. Lett., 2015, 40(16): 3739
CrossRef ADS Google scholar
[38]
J. Mendoza-Hernández, M. Hidalgo-Aguirre, A. Inclán Ladino, D. Lopez-Mago. Perfect Laguerre–Gauss beams. Opt. Lett., 2020, 45(18): 5197
CrossRef ADS Google scholar
[39]
X. Liu, Y. E. Monfared, R. Pan, P. Ma, Y. Cai, C. Liang. Experimental realization of scalar and vector perfect Laguerre–Gaussian beams. Appl. Phys. Lett., 2021, 119(2): 021105
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1426-3 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1426-3.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 12104358, 12104361, and 92050103) and Shaanxi Fundamental Science Research Project for Mathematics and Physics (No. 22JSZ004).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(2718 KB)

Accesses

Citations

Detail

Sections
Recommended

/