Key electronic parameters of 2H-stacking bilayer MoS2 on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry

Xingjia Cheng, Wen Xu, Hua Wen, Jing Zhang, Heng Zhang, Haowen Li, Francois M. Peeters

PDF(5711 KB)
PDF(5711 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63204. DOI: 10.1007/s11467-024-1425-4
RESEARCH ARTICLE

Key electronic parameters of 2H-stacking bilayer MoS2 on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry

Author information +
History +

Abstract

Bilayer (BL) transition metal dichalcogenides (TMDs) are important materials in valleytronics and twistronics. Here we study terahertz (THz) magneto-optical (MO) properties of n-type 2H-stacking BL molybdenum sulfide (MoS2) on sapphire substrate grown by chemical vapor deposition. The AFM, Raman spectroscopy and photoluminescence are used for characterization of the samples. Applying THz time-domain spectroscopy (TDS), in combination with polarization test and the presence of magnetic field in Faraday geometry, THz MO transmissions through the sample are measured from 0 to 8 T at 80 K. The complex right- and left-handed circular MO conductivities for 2H-stacking BL MoS2 are obtained. Through fitting the experimental results with theoretical formula of MO conductivities for an electron gas, generalized by us previously through the inclusion of photon-induced electronic backscattering effect, we are able to determine magneto-optically the key electronic parameters of BL MoS2, such as the electron density ne, the electronic relaxation time τ, the electronic localization factor c and, particularly, the effective electron mass m around Q-point in between the K- and Γ-point in the electronic band structure. The dependence of these parameters upon magnetic field is examined and analyzed. This is a pioneering experimental work to measure m around the Q-point in 2H-stacking BL MoS2 and the experimental value is very close to that obtained theoretically. We find that ne /τ /c /m in 2H-stacking BL MoS2 decreases/increases/decreases/increases with increasing magnetic field. The results obtained from this study can be benefit to us in gaining an in-depth understanding of the electronic and optoelectronic properties of BL TMD systems.

Graphical abstract

Keywords

bilayer MoS2 / terahertz time-domain spectroscopy / magneto-optical conductivities / key electronic parameters / effective electron mass

Cite this article

Download citation ▾
Xingjia Cheng, Wen Xu, Hua Wen, Jing Zhang, Heng Zhang, Haowen Li, Francois M. Peeters. Key electronic parameters of 2H-stacking bilayer MoS2 on sapphire substrate determined by terahertz magneto-optical measurement in Faraday geometry. Front. Phys., 2024, 19(6): 63204 https://doi.org/10.1007/s11467-024-1425-4

References

[1]
D. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. Wong, and F. H. L. Koppens, Graphene and two-dimensional materials for silicon technology, Nature 573(7775), 507 (2019)
CrossRef ADS Google scholar
[2]
D. Xiao, G. B. Liu, W. Feng, X. Xu, and W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett. 108(19), 196802 (2012)
CrossRef ADS Google scholar
[3]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS Google scholar
[4]
M. L. Lin, Q. H. Tan, J. B. Wu, X. S. Chen, J. H. Wang, Y. H. Pan, X. Zhang, X. Cong, J. Zhang, W. Ji, P. A. Hu, K. H. Liu, and P. H. Tan, Moiré phonons in twisted bilayer MoS2, ACS Nano 12(8), 8770 (2018)
CrossRef ADS Google scholar
[5]
K. F. Mak, D. Xiao, and J. Shan, Light−valley interactions in 2D semiconductors, Nat. Photonics 12(8), 451 (2018)
CrossRef ADS Google scholar
[6]
M. Liao, Z. Wei, L. Du, Q. Wang, J. Tang, H. Yu, F. Wu, J. Zhao, X. Xu, B. Han, K. Liu, P. Gao, T. Polcar, Z. Sun, D. Shi, R. Yang, and G. Zhang, Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun. 11(1), 2153 (2020)
CrossRef ADS Google scholar
[7]
T. Y. Zhang, J. T. Wang, P. Wu, A. Y. Lu, and J. Kong, Vapour-phase deposition of two-dimensional layered chalcogenides, Nat. Rev. Mater. 8(12), 799 (2023)
CrossRef ADS Google scholar
[8]
C. Fox, Y. L. Mao, X. Zhang, Y. Wang, and J. Xiao, Stacking order engineering of two-dimensional materials and device applications, Chem. Rev. 124(4), 1862 (2024)
CrossRef ADS Google scholar
[9]
K. F. Mak, D. Xiao, and J. Shan, Light−valley interactions in 2D semiconductors, Nat. Photonics 12(8), 451 (2018)
CrossRef ADS Google scholar
[10]
Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, and W. Yao, Topological mosaics in moiré superlattices of van der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017)
CrossRef ADS Google scholar
[11]
K. Seyler, P. Rivera, H. Yu, N. Wilson, E. Ray, D. Mandrus, J. Yan, W. Yao, and X. Xu, Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers, Nature 567(7746), 66 (2019)
CrossRef ADS Google scholar
[12]
G. Sharma, Tunable topological Nernst effect in two-dimensional transition-metal dichalcogenides, Phys. Rev. B 98(7), 075416 (2018)
CrossRef ADS Google scholar
[13]
M. Brotons-Gisbert, H. Baek, A. Molina-Sa’nchez, A. Campbell, E. Scerri, D. White, K. Watanabe, K. Taniguchi, C. Bonato, and B. D. Gerardot, Spin-layer locking of interlayer excitons trapped in moiré potentials, Nat. Mater. 19(6), 630 (2020)
CrossRef ADS Google scholar
[14]
Q. Tong, H. Yu, Q. Zhu, Y. Wang, X. Xu, and W. Yao, Topological mosaics in moiré superlattices of van der Waals heterobilayers, Nat. Phys. 13(4), 356 (2017)
CrossRef ADS Google scholar
[15]
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
CrossRef ADS Google scholar
[16]
A. M. van der Zande, J. Kunstmann, A. Chernikov, D. A. Chenet, Y. M. You, X. X. Zhang, P. Y. Huang, T. C. Berkelbach, L. Wang, F. Zhang, M. S. Hybertsen, D. A. Muller, D. R. Reichman, T. F. Heinz, and J. C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist, Nano Lett. 14(7), 3869 (2014)
CrossRef ADS Google scholar
[17]
A. Kormányos, V. Z’olyomi, V. I. Fal’ko, and G. Burkard, Tunable Berry curvature and valley and spin Hall effect in bilayer MoS2, Phys. Rev. B 98(3), 035408 (2018)
CrossRef ADS Google scholar
[18]
X. Cheng, W. Xu, H. Wen, J. Zhang, H. Zhang, H. Li, F. M. Peeters, and Q. Chen, Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy, Front. Phys. 18(5), 53303 (2023)
CrossRef ADS Google scholar
[19]
M. Xia, B. Li, K. Yin, G. Capellini, G. Niu, Y. Gong, W. Zhou, P. M. Ajayan, and Y. H. Xie, Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2, ACS Nano 9(12), 12246 (2015)
CrossRef ADS Google scholar
[20]
R. Ulbricht, E. Hendry, J. Shan, T. F. Heinz, and M. Bonn, Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy, Rev. Mod. Phys. 83(2), 543 (2011)
CrossRef ADS Google scholar
[21]
J.Lloyd-HughesT.I. Jeon, A review of the terahertz conductivity of bulk and nano-materials, Int. J. Infrared Millim. Terahertz Waves 33(9), 871 (2012)
[22]
M. Schubert, P. Kühne, V. Darakchieva, and T. Hofmann, Optical Hall effect model description: Tutorial, J. Opt. Soc. Am. A 33(8), 1553 (2016)
CrossRef ADS Google scholar
[23]
A. J. Campbell, M. Brotons-Gisbert, H. Baek, V. Vitale, T. Taniguchi, K. Watanabe, J. Lischner, and B. D. Gerardot, Exciton−polarons in the presence of strongly correlated electronic states in a MoSe2/WSe2 moiré superlattice, npj 2D Mater. Appl. 6, 79 (2022)
CrossRef ADS Google scholar
[24]
H. Mei, W. Xu, C. Wang, H. Yuan, C. Zhang, L. Ding, J. Zhang, C. Deng, Y. Wang, and F. M. Peeters, Terahertz magneto-optical properties of bi- and tri-layer graphene, J. Phys.: Condens. Matter 30(17), 175701 (2018)
CrossRef ADS Google scholar
[25]
S. Schöche, J. S. Shi, A. Boosalis, P. Kühne, C. M. Herzinger, J. A. Woollam, W. J. Schaff, L. F. Eastman, M. Schubert, and T. Hofmann, Terahertz optical-Hall effect characterization of two-dimensional electron gas properties in AlGaN/GaN high electron mobility transistor structures, Appl. Phys. Lett. 98(9), 092103 (2011)
CrossRef ADS Google scholar
[26]
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films, Sci. Rep. 3(1), 1866 (2013)
CrossRef ADS Google scholar
[27]
X. Wang, H. Feng, Y. Wu, and L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition, J. Am. Chem. Soc. 135(14), 5304 (2013)
CrossRef ADS Google scholar
[28]
S. Hussain, M. A. Shehzad, D. Vikraman, M. Z. Iqbal, J. Singh, M. F. Khan, J. Eom, Y. Seo, and J. Jung, Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition, J. Alloys Compd. 653, 369 (2015)
CrossRef ADS Google scholar
[29]
A. M. van der Zande, J. Kunstmann, A. Chernikov, D. A. Chenet, Y. M. You, X. X. Zhang, P. Y. Huang, T. C. Berkelbach, L. Wang, F. Zhang, M. S. Hybertsen, D. A. Muller, D. R. Reichman, T. F. Heinz, and J. C. Hone, Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist, Nano Lett. 14(7), 3869 (2014)
CrossRef ADS Google scholar
[30]
F. Ullah, J.-H. Lee, Z. Tahir, A. Samad, C. T. Le, J. Kim, D. Kim, M. U. Rashid, S. Lee, K. Kim, H. Cheong, J. I. Jang, M.-J. Seong, and Y. S. Kim, Selective growth and robust valley polarization of bilayer 3R-MoS2, Appl. Mater. & Inter. 13(48), 57588 (2021)
CrossRef ADS Google scholar
[31]
M. Hangyo, T. Nagashima, and S. Nashima, Spectroscopy by pulsed terahertz radiation, Meas. Sci. Technol. 13(11), 1727 (2002)
CrossRef ADS Google scholar
[32]
L. F. Man, W. Xu, Y. M. Xiao, H. Wen, L. Ding, B. Van Duppen, and F. M. Peeters, Terahertz magneto-optical properties of graphene hydrodynamic electron liquid, Phys. Rev. B 104(12), 125420 (2021)
CrossRef ADS Google scholar
[33]
O. Morikawa, A. Quema, S. Nashima, H. Sumikura, T. Nagashima, and M. Hangyo, Faraday ellipticity and Faraday rotation of a doped-silicon wafer studied by terahertz time-domain spectroscopy, J. Appl. Phys. 100(3), 033105 (2006)
CrossRef ADS Google scholar
[34]
M. Tinkham, Energy gap interpretation of experiments on infrared transmission through superconducting films, Phys. Rev. 104(3), 845 (1956)
CrossRef ADS Google scholar
[35]
F.W. HanW. XuL.L. LiC.Zhang, A generalization of the Drude−Smith formula for magneto-optical conductivities in Faraday geometry, J. Appl. Phys. 119(24), 245706 (2016)
[36]
N. V. Smith, Classical generalization of the Drude formula for the optical conductivity, Phys. Rev. B 13, 4212 (2013)
[37]
H. Wen, W. Xu, C. Wang, D. Song, H. Y. Mei, J. Zhang, and L. Ding, Magneto-optical properties of monolayer MoS2−SiO2/Si structure measured via terahertz time-domain spectroscopy, Nano Select 1, 90 (2020)
[38]
W. G. Spitzer and H. Y. Fan, Determination of optical constants and carrier effective mass of semiconductors, Phys. Rev. 106(5), 882 (1957)
CrossRef ADS Google scholar
[39]
F. M. Peeters, X. G. Wu, and J. T. Devreese, Cyclotron mass of a polaron in two dimensions, Phys. Rev. B 34(2), 1160 (1986)
CrossRef ADS Google scholar
[40]
L. Liu, T. Li, L. Ma, W. Li, S. Gao, W. Sun, R. Dong, X. Zou, D. Fan, L. Shao, C. Gu, N. Dai, Z. Yu, X. Chen, X. Tu, Y. Nie, P. Wang, J. Wang, Y. Shi, and X. Wang, Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire, Nature 605(7908), 69 (2022)
CrossRef ADS Google scholar
[41]
J. W. Hodby, G. P. Russell, F. M. Peeters, J. T. Devreese, and D. M. Larsen, Cyclotron resonance of polarons in the silver halides: AgBr and AgCl, Phys. Rev. Lett. 58(14), 1471 (1987)
CrossRef ADS Google scholar
[42]
A. Mukhopadhyay, S. Kanungo, and H. Rahaman, The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs, J. Comput. Electron. 20(1), 161 (2021)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1425-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1425-4.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U2230122 and U2067207) and Shenzhen Science and Technology Program (No. KQTD20190929173954826).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5711 KB)

Accesses

Citations

Detail

Sections
Recommended

/