Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2
Imran Khan, Jisang Hong
Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2
In spintronics, transverse anomalous transport properties have emerged as a highly promising avenue surpassing the conventional longitudinal transport behaviors. Here, we explore the transverse transport properties of monolayer and bilayer Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) systems. All the systems exhibit ferromagnetic ground states with metallic features and also have perpendicular magnetic anisotropy. Besides, the magnetic anisotropy is substantially enhanced with increasing Co-doping concentration. However, unlike magnetic anisotropy, the Curie temperature is suppressed by increasing the Co-doping concentration. For instance, the monolayer and bilayer Fe2.917Co0.083GaTe2 hold a Curie temperature of 253 K and 269 K, which decreases to 163 K and 173 K in monolayer and bilayer Fe2.67Co0.33GaTe2 systems, respectively. We find a giant anomalous Nernst conductivity (ANC) of 6.03 A/(K·m) in the monolayer Fe2.917Co0.083GaTe2 at −30 meV, and this is further enhanced to 11.30 A/(K·m) in the bilayer Fe2.917Co0.083GaTe2 at −20 meV. Moreover, the bilayer Fe2.917Co0.083GaTe2 structure has a large anomalous thermal Hall conductivity (ATHC) of −0.14 W/(K·m) at 100 K. Overall, we find that the Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) structures have better anomalous transverse transport performance than the pristine Fe3GaTe2 system and can be used for potential spintronics and spin caloritronics applications.
two-dimensional (2D) material / Fe3GaTe2 / ferromagnetism / magnetic anisotropy / Curie temperature / anomalous Hall conductivity / anomalous Nernst conductivity / anomalous thermal Hall conductivity
[1] |
O. V. Yazyev, Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys. 73(5), 056501 (2010)
CrossRef
ADS
Google scholar
|
[2] |
O. V. Yazyev and L. Helm, Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
CrossRef
ADS
Google scholar
|
[3] |
I. Khan and J. Hong, Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene, Nanotechnology 27(38), 385701 (2016)
CrossRef
ADS
Google scholar
|
[4] |
Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef
ADS
Google scholar
|
[5] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef
ADS
Google scholar
|
[6] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
Google scholar
|
[7] |
D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K. Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta, D. W. McComb, and R. K. Kawakami, Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit, Nano Lett. 18(5), 3125 (2018)
CrossRef
ADS
Google scholar
|
[8] |
M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)
CrossRef
ADS
Google scholar
|
[9] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef
ADS
Google scholar
|
[10] |
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef
ADS
Google scholar
|
[11] |
F. Xue, Y. Hou, Z. Wang, and R. Wu, Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature, Phys. Rev. B 100(22), 224429 (2019)
CrossRef
ADS
Google scholar
|
[12] |
B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. Zhang, G. Sun, B. Zhao, H. Ma, R. Wu, Z. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. Xu, X. Duan, W. Ji, and X. Duan, Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order, Nat. Mater. 20(6), 818 (2021)
CrossRef
ADS
Google scholar
|
[13] |
Y. Wu, Y. Hu, C. Wang, X. Zhou, X. Hou, W. Xia, Y. Zhang, J. Wang, Y. Ding, J. He, P. Dong, S. Bao, J. Wen, Y. Guo, K. Watanabe, T. Taniguchi, W. Ji, Z. J. Wang, and J. Li, Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2, Adv. Mater. 35(36), 2302568 (2023)
CrossRef
ADS
Google scholar
|
[14] |
Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J. H. Chu, and X. Xu, Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 17(9), 778 (2018)
CrossRef
ADS
Google scholar
|
[15] |
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef
ADS
Google scholar
|
[16] |
G. Zhang, F. Guo, H. Wu, X. Wen, L. Yang, W. Jin, W. Zhang, and H. Chang, Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)
CrossRef
ADS
Google scholar
|
[17] |
A. Roy Karmakar, S. Nandy, A. Taraphder, and G. P. Das, Giant anomalous thermal Hall effect in tilted type-I magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. B 106(24), 245133 (2022)
CrossRef
ADS
Google scholar
|
[18] |
C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A. U. B. Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner, and C. Hess, Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge, Phys. Rev. B 100(8), 085111 (2019)
CrossRef
ADS
Google scholar
|
[19] |
T. Jungwirth, Q. Niu, and A. H. MacDonald, Anomalous Hall effect in ferromagnetic semiconductors, Phys. Rev. Lett. 88(20), 207208 (2002)
CrossRef
ADS
Google scholar
|
[20] |
M. Onoda and N. Nagaosa, Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett. 90(20), 206601 (2003)
CrossRef
ADS
Google scholar
|
[21] |
Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
CrossRef
ADS
Google scholar
|
[22] |
X. Lin and J. Ni, Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2, Phys. Rev. B 100(8), 085403 (2019)
CrossRef
ADS
Google scholar
|
[23] |
X.J. DongJ. Y. YouB.GuG.Su, Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6, Phys. Rev. Appl. 12(1), 014020 (2019)
|
[24] |
R. Syariati, S. Minami, H. Sawahata, and F. Ishii, First-principles study of anomalous Nernst effect in half-metallic iron dichloride monolayer, APL Mater. 8(4), 041105 (2020)
CrossRef
ADS
Google scholar
|
[25] |
A. T. Breidenbach, H. Yu, T. A. Peterson, A. P. McFadden, W. K. Peria, C. J. Palmstrøm, and P. A. Crowell, Anomalous Nernst and Seebeck coefficients in epitaxial thin film Co2MnAlxSi1−x and Co2FeAl, Phys. Rev. B 105(14), 144405 (2022)
CrossRef
ADS
Google scholar
|
[26] |
B. Marfoua and J. Hong, Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2, NPG Asia Mater. 16, 6 (2024)
CrossRef
ADS
Google scholar
|
[27] |
H. Chen, S. Asif, K. Dolui, Y. Wang, J. Támara-Isaza, V. M. L. D. P. Goli, M. Whalen, X. Wang, Z. Chen, H. Zhang, K. Liu, D. Jariwala, M. B. Jungfleisch, C. Chakraborty, A. F. May, M. A. McGuire, B. K. Nikolic, J. Q. Xiao, and M. J. H. Ku, Above-room-temperature ferromagnetism in thin van der Waals flakes of cobalt-substituted Fe5GeTe2, ACS Appl. Mater. Interfaces 15(2), 3287 (2023)
CrossRef
ADS
Google scholar
|
[28] |
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef
ADS
Google scholar
|
[29] |
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef
ADS
Google scholar
|
[30] |
D. Hobbs, G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
CrossRef
ADS
Google scholar
|
[31] |
S.GrimmeJ. AntonyS.EhrlichH.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
[32] |
S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7), 1456 (2011)
CrossRef
ADS
Google scholar
|
[33] |
D. Hobbs, G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
CrossRef
ADS
Google scholar
|
[34] |
R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26(10), 103202 (2014)
CrossRef
ADS
Google scholar
|
[35] |
R.F. L. Evans, Vampire, VAMPIRE (2016), see: vampire.york.ac.uk/
|
[36] |
G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: New features and applications, J. Phys.: Condens. Matter 32(16), 165902 (2020)
CrossRef
ADS
Google scholar
|
[37] |
T. Chakraborty, K. Samanta, S. N. Guin, J. Noky, I. Robredo, S. Prasad, J. Kuebler, C. Shekhar, M. G. Vergniory, and C. Felser, Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6, Phys. Rev. B 106(15), 155141 (2022)
CrossRef
ADS
Google scholar
|
[38] |
Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors, Phys. Rev. Lett. 101(11), 117208 (2008)
CrossRef
ADS
Google scholar
|
[39] |
C. Zeng, S. Nandy, and S. Tewari, Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime, Phys. Rev. Res. 2(3), 032066 (2020)
CrossRef
ADS
Google scholar
|
[40] |
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef
ADS
Google scholar
|
[41] |
X.HeN.Helbig M.J. VerstraeteE.Bousquet, TB2J: A python package for computing magnetic interaction parameters, Comput. Phys. Commun. 264, 107938 (2021)
|
[42] |
Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun. 9(1), 3681 (2018)
CrossRef
ADS
Google scholar
|
[43] |
J. Xu, W. A. Phelan, and C. L. Chien, Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2, Nano Lett. 19(11), 8250 (2019)
CrossRef
ADS
Google scholar
|
[44] |
G. K. H. Madsen, J. Carrete, and M. J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231, 140 (2018)
CrossRef
ADS
Google scholar
|
[45] |
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
CrossRef
ADS
Google scholar
|
[46] |
L. Xu, X. Li, X. Lu, C. Collignon, H. Fu, J. Koo, B. Fauqué, B. Yan, Z. Zhu, and K. Behnia, Finite-temperature violation of the anomalous transverse Wiedemann−Franz law, Sci. Adv. 6(17), eaaz3522 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |