Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2

Imran Khan, Jisang Hong

PDF(3718 KB)
PDF(3718 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63206. DOI: 10.1007/s11467-024-1424-5
RESEARCH ARTICLE

Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2

Author information +
History +

Abstract

In spintronics, transverse anomalous transport properties have emerged as a highly promising avenue surpassing the conventional longitudinal transport behaviors. Here, we explore the transverse transport properties of monolayer and bilayer Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) systems. All the systems exhibit ferromagnetic ground states with metallic features and also have perpendicular magnetic anisotropy. Besides, the magnetic anisotropy is substantially enhanced with increasing Co-doping concentration. However, unlike magnetic anisotropy, the Curie temperature is suppressed by increasing the Co-doping concentration. For instance, the monolayer and bilayer Fe2.917Co0.083GaTe2 hold a Curie temperature of 253 K and 269 K, which decreases to 163 K and 173 K in monolayer and bilayer Fe2.67Co0.33GaTe2 systems, respectively. We find a giant anomalous Nernst conductivity (ANC) of 6.03 A/(K·m) in the monolayer Fe2.917Co0.083GaTe2 at −30 meV, and this is further enhanced to 11.30 A/(K·m) in the bilayer Fe2.917Co0.083GaTe2 at −20 meV. Moreover, the bilayer Fe2.917Co0.083GaTe2 structure has a large anomalous thermal Hall conductivity (ATHC) of −0.14 W/(K·m) at 100 K. Overall, we find that the Fe3−xCoxGaTe2 (x = 0.083, 0.167, 0.250, and 0.330) structures have better anomalous transverse transport performance than the pristine Fe3GaTe2 system and can be used for potential spintronics and spin caloritronics applications.

Graphical abstract

Keywords

two-dimensional (2D) material / Fe3GaTe2 / ferromagnetism / magnetic anisotropy / Curie temperature / anomalous Hall conductivity / anomalous Nernst conductivity / anomalous thermal Hall conductivity

Cite this article

Download citation ▾
Imran Khan, Jisang Hong. Giant anomalous transverse transport properties of Co-doped two-dimensional Fe3GaTe2. Front. Phys., 2024, 19(6): 63206 https://doi.org/10.1007/s11467-024-1424-5

References

[1]
O. V. Yazyev, Emergence of magnetism in graphene materials and nanostructures, Rep. Prog. Phys. 73(5), 056501 (2010)
CrossRef ADS Google scholar
[2]
O. V. Yazyev and L. Helm, Defect-induced magnetism in graphene, Phys. Rev. B 75(12), 125408 (2007)
CrossRef ADS Google scholar
[3]
I. Khan and J. Hong, Magnetic properties of transition metal Mn, Fe and Co dimers on monolayer phosphorene, Nanotechnology 27(38), 385701 (2016)
CrossRef ADS Google scholar
[4]
Y. W. Son, M. L. Cohen, and S. G. Louie, Half-metallic graphene nanoribbons, Nature 444(7117), 347 (2006)
CrossRef ADS Google scholar
[5]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[6]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS Google scholar
[7]
D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K. Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta, D. W. McComb, and R. K. Kawakami, Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit, Nano Lett. 18(5), 3125 (2018)
CrossRef ADS Google scholar
[8]
M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates, Nat. Nanotechnol. 13(4), 289 (2018)
CrossRef ADS Google scholar
[9]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit, Nature 546(7657), 270 (2017)
CrossRef ADS Google scholar
[10]
C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals, Nature 546(7657), 265 (2017)
CrossRef ADS Google scholar
[11]
F. Xue, Y. Hou, Z. Wang, and R. Wu, Two-dimensional ferromagnetic van der Waals CrCl3 monolayer with enhanced anisotropy and Curie temperature, Phys. Rev. B 100(22), 224429 (2019)
CrossRef ADS Google scholar
[12]
B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. Zhang, G. Sun, B. Zhao, H. Ma, R. Wu, Z. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. Xu, X. Duan, W. Ji, and X. Duan, Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order, Nat. Mater. 20(6), 818 (2021)
CrossRef ADS Google scholar
[13]
Y. Wu, Y. Hu, C. Wang, X. Zhou, X. Hou, W. Xia, Y. Zhang, J. Wang, Y. Ding, J. He, P. Dong, S. Bao, J. Wen, Y. Guo, K. Watanabe, T. Taniguchi, W. Ji, Z. J. Wang, and J. Li, Fe-intercalation dominated ferromagnetism of van der Waals Fe3GeTe2, Adv. Mater. 35(36), 2302568 (2023)
CrossRef ADS Google scholar
[14]
Z. Fei, B. Huang, P. Malinowski, W. Wang, T. Song, J. Sanchez, W. Yao, D. Xiao, X. Zhu, A. F. May, W. Wu, D. H. Cobden, J. H. Chu, and X. Xu, Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2, Nat. Mater. 17(9), 778 (2018)
CrossRef ADS Google scholar
[15]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2, Nature 563(7729), 94 (2018)
CrossRef ADS Google scholar
[16]
G. Zhang, F. Guo, H. Wu, X. Wen, L. Yang, W. Jin, W. Zhang, and H. Chang, Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy, Nat. Commun. 13(1), 5067 (2022)
CrossRef ADS Google scholar
[17]
A. Roy Karmakar, S. Nandy, A. Taraphder, and G. P. Das, Giant anomalous thermal Hall effect in tilted type-I magnetic Weyl semimetal Co3Sn2S2, Phys. Rev. B 106(24), 245133 (2022)
CrossRef ADS Google scholar
[18]
C. Wuttke, F. Caglieris, S. Sykora, F. Scaravaggi, A. U. B. Wolter, K. Manna, V. Süss, C. Shekhar, C. Felser, B. Büchner, and C. Hess, Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge, Phys. Rev. B 100(8), 085111 (2019)
CrossRef ADS Google scholar
[19]
T. Jungwirth, Q. Niu, and A. H. MacDonald, Anomalous Hall effect in ferromagnetic semiconductors, Phys. Rev. Lett. 88(20), 207208 (2002)
CrossRef ADS Google scholar
[20]
M. Onoda and N. Nagaosa, Quantized anomalous Hall effect in two-dimensional ferromagnets: Quantum Hall effect in metals, Phys. Rev. Lett. 90(20), 206601 (2003)
CrossRef ADS Google scholar
[21]
Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth, D. Wang, E. Wang, and Q. Niu, First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe, Phys. Rev. Lett. 92(3), 037204 (2004)
CrossRef ADS Google scholar
[22]
X. Lin and J. Ni, Layer-dependent intrinsic anomalous Hall effect in Fe3GeTe2, Phys. Rev. B 100(8), 085403 (2019)
CrossRef ADS Google scholar
[23]
X.J. DongJ. Y. YouB.GuG.Su, Strain-induced room-temperature ferromagnetic semiconductors with large anomalous Hall conductivity in two-dimensional Cr2Ge2Se6, Phys. Rev. Appl. 12(1), 014020 (2019)
[24]
R. Syariati, S. Minami, H. Sawahata, and F. Ishii, First-principles study of anomalous Nernst effect in half-metallic iron dichloride monolayer, APL Mater. 8(4), 041105 (2020)
CrossRef ADS Google scholar
[25]
A. T. Breidenbach, H. Yu, T. A. Peterson, A. P. McFadden, W. K. Peria, C. J. Palmstrøm, and P. A. Crowell, Anomalous Nernst and Seebeck coefficients in epitaxial thin film Co2MnAlxSi1−x and Co2FeAl, Phys. Rev. B 105(14), 144405 (2022)
CrossRef ADS Google scholar
[26]
B. Marfoua and J. Hong, Large anomalous transverse transport properties in atomically thin 2D Fe3GaTe2, NPG Asia Mater. 16, 6 (2024)
CrossRef ADS Google scholar
[27]
H. Chen, S. Asif, K. Dolui, Y. Wang, J. Támara-Isaza, V. M. L. D. P. Goli, M. Whalen, X. Wang, Z. Chen, H. Zhang, K. Liu, D. Jariwala, M. B. Jungfleisch, C. Chakraborty, A. F. May, M. A. McGuire, B. K. Nikolic, J. Q. Xiao, and M. J. H. Ku, Above-room-temperature ferromagnetism in thin van der Waals flakes of cobalt-substituted Fe5GeTe2, ACS Appl. Mater. Interfaces 15(2), 3287 (2023)
CrossRef ADS Google scholar
[28]
G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
CrossRef ADS Google scholar
[29]
G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
CrossRef ADS Google scholar
[30]
D. Hobbs, G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
CrossRef ADS Google scholar
[31]
S.GrimmeJ. AntonyS.EhrlichH.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
[32]
S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comput. Chem. 32(7), 1456 (2011)
CrossRef ADS Google scholar
[33]
D. Hobbs, G. Kresse, and J. Hafner, Fully unconstrained noncollinear magnetism within the projector augmented-wave method, Phys. Rev. B 62(17), 11556 (2000)
CrossRef ADS Google scholar
[34]
R. F. L. Evans, W. J. Fan, P. Chureemart, T. A. Ostler, M. O. A. Ellis, and R. W. Chantrell, Atomistic spin model simulations of magnetic nanomaterials, J. Phys.: Condens. Matter 26(10), 103202 (2014)
CrossRef ADS Google scholar
[35]
R.F. L. Evans, Vampire, VAMPIRE (2016), see: vampire.york.ac.uk/
[36]
G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, Wannier90 as a community code: New features and applications, J. Phys.: Condens. Matter 32(16), 165902 (2020)
CrossRef ADS Google scholar
[37]
T. Chakraborty, K. Samanta, S. N. Guin, J. Noky, I. Robredo, S. Prasad, J. Kuebler, C. Shekhar, M. G. Vergniory, and C. Felser, Berry curvature induced anomalous Hall conductivity in the magnetic topological oxide double perovskite Sr2FeMoO6, Phys. Rev. B 106(15), 155141 (2022)
CrossRef ADS Google scholar
[38]
Y. Pu, D. Chiba, F. Matsukura, H. Ohno, and J. Shi, Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors, Phys. Rev. Lett. 101(11), 117208 (2008)
CrossRef ADS Google scholar
[39]
C. Zeng, S. Nandy, and S. Tewari, Fundamental relations for anomalous thermoelectric transport coefficients in the nonlinear regime, Phys. Rev. Res. 2(3), 032066 (2020)
CrossRef ADS Google scholar
[40]
A. Togo and I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108, 1 (2015)
CrossRef ADS Google scholar
[41]
X.HeN.Helbig M.J. VerstraeteE.Bousquet, TB2J: A python package for computing magnetic interaction parameters, Comput. Phys. Commun. 264, 107938 (2021)
[42]
Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions, Nat. Commun. 9(1), 3681 (2018)
CrossRef ADS Google scholar
[43]
J. Xu, W. A. Phelan, and C. L. Chien, Large anomalous Nernst effect in a van der Waals ferromagnet Fe3GeTe2, Nano Lett. 19(11), 8250 (2019)
CrossRef ADS Google scholar
[44]
G. K. H. Madsen, J. Carrete, and M. J. Verstraete, BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients, Comput. Phys. Commun. 231, 140 (2018)
CrossRef ADS Google scholar
[45]
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Anomalous Hall effect, Rev. Mod. Phys. 82(2), 1539 (2010)
CrossRef ADS Google scholar
[46]
L. Xu, X. Li, X. Lu, C. Collignon, H. Fu, J. Koo, B. Fauqué, B. Yan, Z. Zhu, and K. Behnia, Finite-temperature violation of the anomalous transverse Wiedemann−Franz law, Sci. Adv. 6(17), eaaz3522 (2020)
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Author contributions

J. H. conceived the idea of this study; I. K. performed DFT calculations; J. H. and I. K. wrote and revised the manuscript.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1424-5 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1424-5. Supporting information includes the information about different random site Co doping in bilayer Fe3−xCoxGaTe2, phonon dispersion curves for monolayer Fe3−xCoxGaTe2, average local magnetic moments in bilayer Fe3−xCoxGaTe2, spin projected band structures including SOC for monolayer and bilayer systems, MAE contributions, temperature dependent magnetization curves, thickness-dependent longitudinal conductivity, and Barry curvature along high symmetry lines for monolayer and bilayer Fe3−xCoxGaTe2 systems.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2C1004440) and the Supercomputing Center/Korea Institute of Science and Technology Information with supercomputing resources including technical support (KSC-2023-CRE-0190).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3718 KB)

Accesses

Citations

Detail

Sections
Recommended

/