Self-aligned TiOx-based 3D vertical memristor for a high-density synaptic array
Subaek Lee, Juri Kim, Sungjun Kim
Self-aligned TiOx-based 3D vertical memristor for a high-density synaptic array
The emerging nonvolatile memory, three-dimensional vertical resistive random-access memory (VRRAM), inspired by the vertical NAND structure, has been proposed to replace NAND flash memory which has reached its integration limit. To improve the vertical ionic diffusion occurring in the conventional VRRAM structure, we propose a Pt/HfO2/TiO2/Ti self-aligned VRRAM with physically confined switching cells through sidewall thermal oxidation. We achieved stable bipolar switching, endurance (>104 cycles), and retention (>104 s) responses, and improved the interlayer leakage current issue through a distinctive self-aligned structure. Additionally, we elucidated the switching mechanism by analyzing current levels concerning ambient temperature. To utilize VRRAM for neuromorphic computing, the biological synaptic functions are emulated by applying pulse stimulation to the synaptic cell. The weight modulation of biological synapses is demonstrated based on potentiation, depression, spike-rate-dependent plasticity, and spike-timing-dependent plasticity. Additionally, we improve the pattern recognition rate by creating a linear conductance modulation with an incremental pulse train in pattern recognition simulations. The stable electrical characteristics and implementation of various synaptic functions demonstrate that self-aligned VRRAM is suitable for neuromorphic systems as a high-density synaptic device.
3D integration / resistive switching / vertical RRAM / synaptic plasticity / self-aligned insulator
[1] |
C. Monzio Compagnoni , A. Goda , A. S. Spinelli , P. Feeley , A. L. Lacaita , A. Visconti . Reviewing the evolution of the NAND flash technology. Proc. IEEE, 2017, 105(9): 1609
CrossRef
ADS
Google scholar
|
[2] |
R. Bez , E. Camerlenghi , A. Modelli , A. Visconti . Introduction to flash memory. Proc. IEEE, 2003, 91(4): 489
CrossRef
ADS
Google scholar
|
[3] |
P. Pavan , R. Bez , P. Olivo , E. Zanoni . Flash memory cells ‒ An overview. Proc. IEEE, 1997, 85(8): 1248
CrossRef
ADS
Google scholar
|
[4] |
R. Micheloni , L. Crippa , C. Zambelli , P. Olivo . Architectural and integration options for 3D NAND flash memories. Computers, 2017, 6(3): 27
CrossRef
ADS
Google scholar
|
[5] |
Y. H. Hsiao , H. T. Lue , W. C. Chen , K. P. Chang , Y. H. Shih , B. Y. Tsui , K. Y. Hsieh , C. Y. Lu . Modeling the impact of random grain boundary traps on the electrical behavior of vertical gate 3D NAND flash memory devices. IEEE Trans. Electron Dev., 2014, 61(6): 2064
CrossRef
ADS
Google scholar
|
[6] |
A. Goda . Recent progress on 3D nand flash technologies. Electronics (Basel), 2021, 10(24): 3156
CrossRef
ADS
Google scholar
|
[7] |
G. H. Lee , S. Hwang , J. Yu , H. Kim . Architecture and process integration overview of 3D nand flash technologies. Appl. Sci. (Basel), 2021, 11(15): 6703
CrossRef
ADS
Google scholar
|
[8] |
A.Goda, 3-D NAND technology achievements and future scaling perspectives, IEEE Trans. Electron Dev. 67(4), 1373 (2020)
|
[9] |
C. Y. Lu . Future prospects of NAND flash memory technology-the evolution from floating gate to charge trapping to 3D stacking. J. Nanosci. Nanotechnol., 2012, 12(10): 7604
CrossRef
ADS
Google scholar
|
[10] |
S. S. Kim , S. K. Yong , W. Kim , S. Kang , H. W. Park , K. J. Yoon , D. S. Sheen , S. Lee , C. S. Hwang . Review of semiconductor flash memory devices for material and process issues. Adv. Mater., 2023, 35(43): 2370310
CrossRef
ADS
Google scholar
|
[11] |
J. S. Meena , S. M. Sze , U. Chand , T. Y. Tseng . Overview of emerging nonvolatile memory technologies. Nanoscale Res. Lett., 2014, 9(1): 526
CrossRef
ADS
Google scholar
|
[12] |
N. K. Upadhyay , H. Jiang , Z. Wang , S. Asapu , Q. Xia , J. Joshua Yang . Emerging memory devices for neuromorphic computing. Adv. Mater. Technol., 2019, 4(4): 1800589
CrossRef
ADS
Google scholar
|
[13] |
G. Molas , E. Nowak . Advances in emerging memory technologies: From data storage to artificial intelligence. Appl. Sci. (Basel), 2021, 11(23): 11254
CrossRef
ADS
Google scholar
|
[14] |
J. K. Lee , S. Kim . Comparative analysis of low-frequency noise based resistive switching phenomenon for filamentary and interfacial RRAM devices. Chaos Solitons Fractals, 2023, 173: 113633
CrossRef
ADS
Google scholar
|
[15] |
T. Endoh , H. Koike , S. Ikeda , T. Hanyu , H. Ohno . An overview of nonvolatile emerging memories-spintronics for working memories. IEEE J. Emerg. Sel. Top. Circuits Syst., 2016, 6(2): 109
CrossRef
ADS
Google scholar
|
[16] |
F. Zahoor , T. Z. Azni Zulkifli , F. A. Khanday . Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res. Lett., 2020, 15(1): 90
CrossRef
ADS
Google scholar
|
[17] |
J. Heo , Y. Cho , H. Ji , M. H. Kim , J. H. Lee , J. K. Lee , S. Kim . Noise-assisted transport mechanism analysis and synaptic characteristics in ZrOx/HfAlOx-based memristor for neuromorphic systems. APL Mater., 2023, 11(11): 111103
CrossRef
ADS
Google scholar
|
[18] |
Z. Shen , C. Zhao , Y. Qi , W. Xu , Y. Liu , I. Z. Mitrovic , L. Yang , C. Zhao . Advances of RRAM devices: Resistive switching mechanisms, materials and bionic synaptic application. Nanomaterials (Basel), 2020, 10(8): 1437
CrossRef
ADS
Google scholar
|
[19] |
D. Ju , S. Kim , S. Kim . Highly uniform resistive switching characteristics of Ti/TaOx/ITO memristor devices for neuromorphic system. J. Alloys Compd., 2023, 961: 170920
CrossRef
ADS
Google scholar
|
[20] |
Y. T. Li , S. B. Long , Q. Liu , H. B. Lü , S. Liu , M. Liu . An overview of resistive random access memory devices. Chin. Sci. Bull., 2011, 56(28−29): 3072
CrossRef
ADS
Google scholar
|
[21] |
J. B. Roldán , E. Miranda , D. Maldonado , A. N. Mikhaylov , N. V. Agudov , A. A. Dubkov , M. N. Koryazhkina , M. B. González , M. A. Villena , S. Poblador , M. Saludes-Tapia , R. Picos , F. Jiménez-Molinos , S. G. Stavrinides , E. Salvador , F. J. Alonso , F. Campabadal , B. Spagnolo , M. Lanza , L. O. Chua . Variability in resistive memories. Adv. Intell. Syst., 2023, 5(6): 2200338
CrossRef
ADS
Google scholar
|
[22] |
P. Stasner , N. Kopperberg , K. Schnieders , T. Hennen , S. Wiefels , S. Menzel , R. Waser , D. J. Wouters . Reliability effects of lateral filament confinement by nano-scaling the oxide in memristive devices. Nanoscale Horiz., 2024, 9(5): 764
CrossRef
ADS
Google scholar
|
[23] |
Y. Fang , Z. Yu , Z. Wang , T. Zhang , Y. Yang , Y. Cai , R. Huang . Improvement of HfOx-based RRAM device variation by inserting ALD TiN buffer layer. IEEE Electron Device Lett., 2018, 39(6): 819
CrossRef
ADS
Google scholar
|
[24] |
Y. C. Chen , Y. F. Chang , X. Wu , F. Zhou , M. Guo , C. Y. Lin , C. C. Hsieh , B. Fowler , T. C. Chang , J. C. Lee . Dynamic conductance characteristics in HfOx-based resistive random access memory. RSC Adv., 2017, 7(21): 12984
CrossRef
ADS
Google scholar
|
[25] |
H. K. Li , T. P. Chen , S. G. Hu , P. Liu , Y. Liu , P. S. Lee , X. P. Wang , H. Y. Li , G. Q. Lo . Study of multilevel high-resistance states in HfOx-based resistive switching random access memory by impedance spectroscopy. IEEE Trans. Electron Dev., 2015, 62(8): 2684
CrossRef
ADS
Google scholar
|
[26] |
M. L. Urquiza , M. M. Islam , A. C. T. Van Duin , X. Cartoixà , A. Strachan . Atomistic insights on the full operation cycle of a HfO2-based resistive random access memory cell from molecular dynamics. ACS Nano, 2021, 15(8): 12945
CrossRef
ADS
Google scholar
|
[27] |
F. De Stefano , M. Houssa , V. V. Afanas’Ev , J. A. Kittl , M. Jurczak , A. Stesmans . Nature of the filament formed in HfO2-based resistive random access memory. Thin Solid Films, 2013, 533: 15
CrossRef
ADS
Google scholar
|
[28] |
A. Hardtdegen , C. La Torre , F. Cuppers , S. Menzel , R. Waser , S. Hoffmann-Eifert . Improved switching stability and the effect of an internal series resistor in HfO2/TiOx bilayer ReRAM cells. IEEE Trans. Electron Dev., 2018, 65(8): 3229
CrossRef
ADS
Google scholar
|
[29] |
S. Ban , O. Kim . Improvement of switching uniformity in HfOx-based resistive random access memory with a titanium film and effects of titanium on resistive switching behaviors. Jpn. J. Appl. Phys., 2014, 53(6S): 06JE15
CrossRef
ADS
Google scholar
|
[30] |
Y. J. Huang , T. H. Shen , L. H. Lee , C. Y. Wen , S. C. Lee . Low-power resistive random access memory by confining the formation of conducting filaments. AIP Adv., 2016, 6(6): 065022
CrossRef
ADS
Google scholar
|
[31] |
H. Y. Liu , Y. L. Hsu , Y. X. Zheng . Investigation of oxygen deficiency-rich/oxygen deficiency-poor stacked TiO2 based resistive random access memory by mist chemical vapor deposition. Ceram. Int., 2022, 48(19): 28881
CrossRef
ADS
Google scholar
|
[32] |
P. Bousoulas , I. Giannopoulos , P. Asenov , I. Karageorgiou , D. Tsoukalas . Investigating the origins of high multilevel resistive switching in forming free Ti/TiO2−x-based memory devices through experiments and simulations. J. Appl. Phys., 2017, 121(9): 094501
CrossRef
ADS
Google scholar
|
[33] |
J. Park , S. Jung , J. Lee , W. Lee , S. Kim , J. Shin , H. Hwang . Resistive switching characteristics of ultra-thin TiOx. Microelectron. Eng., 2011, 88(7): 1136
CrossRef
ADS
Google scholar
|
[34] |
Y. Yu , F. Yang , S. Mao , S. Zhu , Y. Jia , L. Yuan , M. Salmen , B. Sun . Effect of anodic oxidation time on resistive switching memory behavior based on amorphous TiO2 thin films device. Chem. Phys. Lett., 2018, 706: 477
CrossRef
ADS
Google scholar
|
[35] |
J. Kim , J. H. Choi , S. Kim , C. Choi , S. Kim . Transition of short-term to long-term memory of Cu/TaOx/CNT conductive bridge random access memory for neuromorphic engineering. Carbon, 2023, 215: 118438
CrossRef
ADS
Google scholar
|
[36] |
C. H. Kim , S. Lim , S. Y. Woo , W. M. Kang , Y. T. Seo , S. T. Lee , S. Lee , D. Kwon , S. Oh , Y. Noh , H. Kim , J. Kim , J. H. Bae , J. H. Lee . Emerging memory technologies for neuromorphic computing. Nanotechnology, 2019, 30(3): 032001
CrossRef
ADS
Google scholar
|
[37] |
V. A. Makarov , S. A. Lobov , S. Shchanikov , A. Mikhaylov , V. B. Kazantsev . Toward reflective spiking neural networks exploiting memristive devices. Front. Comput. Neurosci., 2022, 16: 859874
CrossRef
ADS
Google scholar
|
[38] |
A. N. Matsukatova , N. V. Prudnikov , V. A. Kulagin , S. Battistoni , A. A. Minnekhanov , A. D. Trofimov , A. A. Nesmelov , S. A. Zavyalov , Y. N. Malakhova , M. Parmeggiani , A. Ballesio , S. L. Marasso , S. N. Chvalun , V. A. Demin , A. V. Emelyanov , V. Erokhin . Combination of organic-based reservoir computing and spiking neuromorphic systems for a robust and efficient pattern classification. Adv. Intell. Syst., 2023, 5(6): 2200407
CrossRef
ADS
Google scholar
|
[39] |
J. Park , T. H. Kim , O. Kwon , M. Ismail , C. Mahata , Y. Kim , S. Kim , S. Kim . Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM. Nano Energy, 2022, 104: 107886
CrossRef
ADS
Google scholar
|
[40] |
S. Yu , H. Y. Chen , B. Gao , J. Kang , H. S. P. Wong . HfOx-based vertical resistive switching random access memory suitable for bit-cost-effective three-dimensional cross-point architecture. ACS Nano, 2013, 7(3): 2320
CrossRef
ADS
Google scholar
|
[41] |
A. Al-Haddad , C. Wang , H. Qi , F. Grote , L. Wen , J. Bernhard , R. Vellacheri , S. Tarish , G. Nabi , U. Kaiser , Y. Lei . Highly-ordered 3D vertical resistive switching memory arrays with ultralow power consumption and ultrahigh density. ACS Appl. Mater. Interfaces, 2016, 8(35): 23348
CrossRef
ADS
Google scholar
|
[42] |
Z. Jiang , S. Qin , H. Li , S. Fujii , D. Lee , S. Wong , H. S. P. Wong . Next-generation ultrahigh-density 3-D vertical resistive switching memory (VRSM)-Part II: Design guidelines for device, array, and architecture. IEEE Trans. Electron Dev., 2019, 66(12): 5147
CrossRef
ADS
Google scholar
|
[43] |
H. Kim , J. Lee , H. W. Kim , J. Woo , M. H. Kim , S. H. Lee . Definition of a localized conducting path via suppressed charge injection in oxide memristors for stable practical hardware neural networks. ACS Appl. Mater. Interfaces, 2023, 15(44): 51444
CrossRef
ADS
Google scholar
|
[44] |
S. S. Kim , S. K. Yong , J. Kim , J. M. Choi , T. W. Park , H. Y. Kim , H. J. Kim , C. S. Hwang . Fabrication of a hole-type vertical resistive-switching random-access array and intercell interference induced by lateral charge spreading. Adv. Electron. Mater., 2023, 9(3): 2200998
CrossRef
ADS
Google scholar
|
[45] |
S. A. Mojarad , J. P. Goss , K. S. K. Kwa , Z. Zhou , R. A. S. Al-Hamadany , D. J. R. Appleby , N. K. Ponon , A. Oneill . Leakage current asymmetry and resistive switching behavior of SrTiO3. Appl. Phys. Lett., 2012, 101(17): 173507
CrossRef
ADS
Google scholar
|
[46] |
S. Ali , J. Bae , C. H. Lee , N. P. Kobayashi , S. Shin , A. Ali . Resistive switching device with highly asymmetric current-voltage characteristics: A solution to backward sneak current in passive crossbar arrays. Nanotechnology, 2018, 29(45): 455201
CrossRef
ADS
Google scholar
|
[47] |
Y.C. ChenC.C. LinS.T. HuC.Y. LinB.FowlerJ.Lee, A novel resistive switching identification method through relaxation characteristics for sneak-path-constrained selectorless RRAM application, Sci. Rep. 9(1), 12420 (2019)
|
[48] |
M. Yu , Y. Cai , Z. Wang , Y. Fang , Y. Liu , Z. Yu , Y. Pan , Z. Zhang , J. Tan , X. Yang , M. Li , R. Huang . Novel vertical 3D structure of TaOx-based RRAM with self-localized switching region by sidewall electrode oxidation. Sci. Rep., 2016, 6(1): 21020
CrossRef
ADS
Google scholar
|
[49] |
A.A. KorolevaD.S. KuzmichevM.G. KozodaevI.V. ZabrosaevE.V. KorostylevA.M. Markeev, CMOS-compatible self-aligned 3D memristive elements for reservoir computing systems, Appl. Phys. Lett. 122(2), 022905 (2023)
|
[50] |
K. Lee , K. Park , H. J. Lee , M. S. Song , K. C. Lee , J. Namkung , J. H. Lee , J. Park , S. C. Chae . Enhanced ferroelectric switching speed of Si-doped HfO2 thin film tailored by oxygen deficiency. Sci. Rep., 2021, 11(1): 6290
CrossRef
ADS
Google scholar
|
[51] |
W. Xie , R. Li , Q. Xu . Enhanced photocatalytic activity of Se-doped TiO2 under visible light irradiation. Sci. Rep., 2018, 8(1): 8752
CrossRef
ADS
Google scholar
|
[52] |
E. A. Khera , C. Mahata , M. Imran , N. A. Niaz , F. Hussain , R. A. Khalil , U. Rasheed . Improved resistive switching characteristics of a multi-stacked HfO2/Al2O3/HfO2 RRAM structure for neuromorphic and synaptic applications: Experimental and computational study. RSC Adv., 2022, 12(19): 11649
CrossRef
ADS
Google scholar
|
[53] |
Q. Wang , G. Niu , S. Roy , Y. Wang , Y. Zhang , H. Wu , S. Zhai , W. Bai , P. Shi , S. Song , Z. Song , Y. H. Xie , Z. G. Ye , C. Wenger , X. Meng , W. Ren . Interface-engineered reliable HfO2-based RRAM for synaptic simulation. J. Mater. Chem. C, 2019, 7(40): 12682
CrossRef
ADS
Google scholar
|
[54] |
S. Y. Wang , C. W. Huang , D. Y. Lee , T. Y. Tseng , T. C. Chang . Multilevel resistive switching in Ti/CuxO/Pt memory devices. J. Appl. Phys., 2010, 108(11): 114110
CrossRef
ADS
Google scholar
|
[55] |
P. Stoliar , P. Levy , M. J. Sanchez , A. G. Leyva , C. A. Albornoz , F. Gomez-Marlasca , A. Zanini , C. Toro Salazar , N. Ghenzi , M. J. Rozenberg . Nonvolatile multilevel resistive switching memory cell: A transition metal oxide-based circuit. IEEE Trans. Circuits Syst. II Express Briefs, 2014, 61(1): 21
CrossRef
ADS
Google scholar
|
[56] |
P. H. Chen , C. Y. Lin , T. C. Chang , J. K. Eshraghian , Y. T. Chao , W. D. Lu , S. M. Sze . Investigating selectorless property within niobium devices for storage applications. ACS Appl. Mater. Interfaces, 2022, 14(1): 2343
CrossRef
ADS
Google scholar
|
[57] |
K. H. Chen , T. M. Tsai , C. M. Cheng , S. J. Huang , K. C. Chang , S. P. Liang , T. F. Young . Schottky emission distance and barrier height properties of bipolar switching Gd: SiOx RRAM devices under different oxygen concentration environments. Materials (Basel), 2017, 11(1): 43
CrossRef
ADS
Google scholar
|
[58] |
Y. Li , Y. Zhong , J. Zhang , L. Xu , Q. Wang , H. Sun , H. Tong , X. Cheng , X. Miao . Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Sci. Rep., 2014, 4(1): 4906
CrossRef
ADS
Google scholar
|
[59] |
J. Chen , C. Zhu , G. Cao , H. Liu , R. Bian , J. Wang , C. Li , J. Chen , Q. Fu , Q. Liu , P. Meng , W. Li , F. Liu , Z. Liu . Mimicking neuroplasticity via ion migration in van der Waals layered Copper indium thiophosphate. Adv. Mater., 2022, 34(25): 2104676
CrossRef
ADS
Google scholar
|
[60] |
M. Ismail , H. Abbas , A. Sokolov , C. Mahata , C. Choi , S. Kim . Emulating synaptic plasticity and resistive switching characteristics through amorphous Ta2O5 embedded layer for neuromorphic computing. Ceram. Int., 2021, 47(21): 30764
CrossRef
ADS
Google scholar
|
[61] |
M. F. Bear , R. C. Malenka . Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol., 1994, 4(3): 389
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |