Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures

Wenlong Chu, Xilong Zhou, Ze Wang, Xiulian Fan, Xuehao Guo, Cheng Li, Jianling Yue, Fangping Ouyang, Jiong Zhao, Yu Zhou

PDF(4100 KB)
PDF(4100 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33212. DOI: 10.1007/s11467-024-1414-7
RESEARCH ARTICLE

Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures

Author information +
History +

Abstract

Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe2 nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe2 nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6‒40 μm and the thickness down to 4.5 nm. The scalable amorphous HfO2 and HfSe2 heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe2 templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf−O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO2−HfSe2 heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 105 and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe2 nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.

Graphical abstract

Keywords

chemical vapor deposition / HfSe2−HfO2 / nanoelectronics

Cite this article

Download citation ▾
Wenlong Chu, Xilong Zhou, Ze Wang, Xiulian Fan, Xuehao Guo, Cheng Li, Jianling Yue, Fangping Ouyang, Jiong Zhao, Yu Zhou. Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures. Front. Phys., 2024, 19(3): 33212 https://doi.org/10.1007/s11467-024-1414-7

References

[1]
T.LiT.Tu Y.SunH. FuJ.YuL.XingZ.Wang H.WangR. JiaJ.WuC.TanY.Liang Y.ZhangC. ZhangY.DaiC.QiuM.Li R.HuangL. JiaoK.LaiB.YanP.Gao H.Peng, A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron. 3(8), 473 (2020)
[2]
Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, K. Lai. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett., 2017, 17(9): 5508
CrossRef ADS Google scholar
[3]
C. Chen, X. Chen, C. Wu, X. Wang, Y. Ping, X. Wei, X. Zhou, J. Lu, L. Zhu, J. Zhou, T. Zhai, J. Han, H. Xu. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
CrossRef ADS Google scholar
[4]
B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. Zhang, G. Sun, B. Zhao, H. Ma, R. Wu, Z. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. Xu, X. Duan, W. Ji, X. Duan. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
CrossRef ADS Google scholar
[5]
X. Fan, R. Xin, L. Li, B. Zhang, C. Li, X. Zhou, H. Chen, H. Zhang, F. OuYang, Y. Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys. 19, 2023, (2): 23401
CrossRef ADS Google scholar
[6]
B. Lei, A. Li, W. Zhou, Y. Wang, W. Xiong, Y. Chen, F. Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2. Front. Phys. 19, 2024, (4): 43200
CrossRef ADS Google scholar
[7]
X. Zhu, H. Liu, L. Liu, L. Ren, W. Li, L. Fang, X. Chen, L. Xie, Y. Jing, J. Chen, S. Liu, F. Ouyang, Y. Zhou, X. Xiong. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem. Mater., 2021, 33(10): 3851
CrossRef ADS Google scholar
[8]
Y. Zhou, C. Li, Y. Zhang, L. Wang, X. Fan, L. Zou, Z. Cai, J. Jiang, S. Zhou, B. Zhang, H. Zhang, W. Li, Z. Chen. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater., 2023, 33(46): 2304302
CrossRef ADS Google scholar
[9]
R. Xie, W. Luo, L. Zou, X. Fan, C. Li, T. Lv, J. Jiang, Z. Chen, Y. Zhou. Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. Discover Nano, 2023, 18(1): 44
CrossRef ADS Google scholar
[10]
Y. Zhou, J. L. Silva, J. M. Woods, J. V. Pondick, Q. Feng, Z. Liang, W. Liu, L. Lin, B. Deng, B. Brena, F. Xia, H. Peng, Z. Liu, H. Wang, C. M. Araujo, J. J. Cha. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater., 2018, 30(18): 1706076
CrossRef ADS Google scholar
[11]
Y. Zhou, H. Jang, J. M. Woods, Y. Xie, P. Kumaravadivel, G. A. Pan, J. Liu, Y. Liu, D. G. Cahill, J. J. Cha. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv. Funct. Mater., 2017, 27(8): 1605928
CrossRef ADS Google scholar
[12]
Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, J. He. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater., 2016, 28(36): 8051
CrossRef ADS Google scholar
[13]
G. Wu, L. Xiang, W. Wang, C. Yao, Z. Yan, C. Zhang, J. Wu, Y. Liu, B. Zheng, H. Liu, C. Hu, X. Sun, C. Zhu, Y. Wang, X. Xiong, Y. Wu, L. Gao, D. Li, A. Pan, S. Li. Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system. Sci. Bull. (Beijing), 2024, 69(4): 473
CrossRef ADS Google scholar
[14]
H. Liu, C. Zhu, Y. Chen, X. Yi, X. Sun, Y. Liu, H. Wang, G. Wu, J. Wu, Y. Li, X. Zhu, D. Li, A. Pan. Polarization-sensitive photodetectors based on highly in-plane anisotropic violet phosphorus with large dichroic ratio. Adv. Funct. Mater., 2023, 34(17): 2314838
CrossRef ADS Google scholar
[15]
X. Sun, C. Zhu, J. Yi, L. Xiang, C. Ma, H. Liu, B. Zheng, Y. Liu, W. You, W. Zhang, D. Liang, Q. Shuai, X. Zhu, H. Duan, L. Liao, Y. Liu, D. Li, A. Pan. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron., 2022, 5(11): 752
CrossRef ADS Google scholar
[16]
J. Zhu, L. Wang, J. Wu, Y. Liang, F. Xiao, B. Xu, Z. Zhang, X. Fan, Y. Zhou, J. Xia, Z. Wang. Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: Pathways towards quantum-noise-limited measurement at room temperature. Chin. Phys. Lett., 2023, 40(3): 038102
CrossRef ADS Google scholar
[17]
B. Liu, W. Chu, S. Liu, Y. Zhou, L. Zou, J. Fu, M. Liu, X. Fu, F. Ouyang, Y. Zhou. Engineering the nanostructures of solution proceed In2SexS3−x films with enhanced near-infrared absorption for photoelectrochemical water splitting. J. Phys. D Appl. Phys., 2022, 55(43): 434004
CrossRef ADS Google scholar
[18]
M. Li, H. Sun, J. Zhou, Y. Zhao. Engineering phonon thermal transport in few-layer PdSe2. Front. Phys. 19, 2023, (3): 33203
CrossRef ADS Google scholar
[19]
T. Zhu, Y. Zhang, X. Wei, M. Jiang, H. Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys., 2023, 18(3): 33601
CrossRef ADS Google scholar
[20]
Y. Wang, X. Guo, S. You, J. Jiang, Z. Wang, F. Ouyang, H. Huang. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano Res., 2023, 16(1): 1115
CrossRef ADS Google scholar
[21]
S. H. Chae, Y. Jin, T. S. Kim, D. S. Chung, H. Na, H. Nam, H. Kim, D. J. Perello, H. Y. Jeong, T. H. Ly, Y. H. Lee. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano, 2016, 10(1): 1309
CrossRef ADS Google scholar
[22]
M. J. Mleczko, C. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Köpe, R. G. Moore, Z. X. Shen, I. R. Fisher, Y. Nishi, E. Pop. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv., 2017, 3(8): e1700481
CrossRef ADS Google scholar
[23]
W. Zhang, Z. Huang, W. Zhang, Y. Li. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res., 2014, 7(12): 1731
CrossRef ADS Google scholar
[24]
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
CrossRef ADS Google scholar
[25]
N. Peimyoo, M. D. Barnes, J. D. Mehew, A. De Sanctis, I. Amit, J. Escolar, K. Anastasiou, A. P. Rooney, S. J. Haigh, S. Russo, M. F. Craciun, F. Withers. Laser-writable high-κ dielectric for van der Waals nanoelectronics. Sci. Adv., 2019, 5(1): eaau0906
CrossRef ADS Google scholar
[26]
L. Yin, K. Xu, Y. Wen, Z. Wang, Y. Huang, F. Wang, T. A. Shifa, R. Cheng, H. Ma, J. He. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett., 2016, 109(21): 213105
CrossRef ADS Google scholar
[27]
M. Kang, S. Rathi, I. Lee, D. Lim, J. Wang, L. Li, M. A. Khan, G. H. Kim. Electrical characterization of multilayer HfSe2 field-effect transistors on SiO2 substrate. Appl. Phys. Lett., 2015, 106(14): 143108
CrossRef ADS Google scholar
[28]
M. Kang, S. Rathi, I. Lee, L. Li, M. A. Khan, D. Lim, Y. Lee, J. Park, S. J. Yun, D. H. Youn, C. Jun, G. H. Kim. Tunable electrical properties of multilayer HfSe2 field effect transistors by oxygen plasma treatment. Nanoscale, 2017, 9(4): 1645
CrossRef ADS Google scholar
[29]
T.KangJ. ParkH.JungH.ChoiS.M. Lee N.LeeR. G. LeeG.KimS.H. KimH.Kim C.W. YangJ. JeonY.H. KimS.Lee, High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices, Adv. Mater. 2312747, doi: 10.1002/adma.202312747 (2024)
[30]
A. L. Hector, W. Levason, G. Reid, S. D. Reid, M. Webster. Evaluation of group 4 metal bis-cyclopentadienyl complexes with selenolate and tellurolate ligands for CVD of ME2 films (E = Se or Te). Chem. Mater., 2008, 20(15): 5100
CrossRef ADS Google scholar
[31]
R. Yue, A. T. Barton, H. Zhu, A. Azcatl, L. F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou, S. McDonnell, L. Colombo, J. W. P. Hsu, J. Kim, M. J. Kim, R. M. Wallace, C. L. Hinkle. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano, 2015, 9(1): 474
CrossRef ADS Google scholar
[32]
K. E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S. A. Giamini, E. Vassalou, N. Kelaidis, A. Dimoulas. Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy. Appl. Phys. Lett., 2015, 106(14): 143105
CrossRef ADS Google scholar
[33]
S. Li, M. E. Pam, Y. Li, L. Chen, Y. C. Chien, X. Fong, D. Chi, K. W. Ang. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater., 2022, 34(25): 2103376
CrossRef ADS Google scholar
[34]
B. Zheng, Y. Chen, Z. Wang, F. Qi, Z. Huang, X. Hao, P. Li, W. Zhang, Y. Li. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater., 2016, 3(3): 035024
CrossRef ADS Google scholar
[35]
D. Wang, X. Zhang, H. Liu, J. Meng, J. Xia, Z. Yin, Y. Wang, J. You, X. M. Meng. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater., 2017, 4(3): 031012
CrossRef ADS Google scholar
[36]
L. Fu, F. Wang, B. Wu, N. Wu, W. Huang, H. Wang, C. Jin, L. Zhuang, J. He, L. Fu, Y. Liu. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv. Mater., 2017, 29(32): 1700439
CrossRef ADS Google scholar
[37]
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang, N. Fang, T. Li, Y. Wu, T. Chen, X. Xie, H. Ma, K. Yan, N. Dai, X. Wu, H. Zhao, Z. Wang, D. He, L. Pan, Y. Shi, P. Wang, W. Chen, K. Nagashio, X. Duan, X. Wang. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron., 2019, 2(12): 563
CrossRef ADS Google scholar
[38]
C. Li, R. Xin, C. Y. Jiao, Z. Zhang, J. Qin, W. Chu, X. Zhou, Z. Li, Z. Wang, J. Xia, Y. Zhou. Synthesis of hetero-site nucleation twisted bilayer MoS2 by local airflow perturbations and interlayer angle characterization. J. Cent. South Univ., 2023, 30(10): 3187
CrossRef ADS Google scholar
[39]
X. Zhu, L. Wong, X. Fan, J. Zhao, Y. Zhou, F. Ouyang. Role of the spatial distribution of gas flow for tuning the vertical/planar growth of nonlayered two-dimensional nanoplates. Cryst. Growth Des., 2022, 22(1): 763
CrossRef ADS Google scholar
[40]
W. Chu, R. Xin, L. Zou, X. Fan, X. Zhou, C. Li, Y. Zhou. Synthesis of nonlayered 2D α-Fe2O3 nanosheets by ultralow concentration precursor with Se catalysts design. Phys. Status Solidi R., 2023, 2023: 2300102
CrossRef ADS Google scholar
[41]
D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng, J. You, R. Wang. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
CrossRef ADS Google scholar
[42]
Q. Yao, L. Zhang, P. Bampoulis, H. J. W. Zandvliet. Nanoscale investigation of defects and oxidation of HfSe2. J. Phys. Chem. C, 2018, 122(44): 25498
CrossRef ADS Google scholar
[43]
F. Cui, X. Zhao, B. Tang, L. Zhu, Y. Huan, Q. Chen, Z. Liu, Y. Zhang. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small, 2022, 18(4): 2105744
CrossRef ADS Google scholar
[44]
F. Zhang, Z. Mo, B. Cui, S. Liu, Q. Xia, B. Li, L. Li, Z. Zhang, J. He, M. Zhong. Bandgap engineering of BiIns nanowire for wide-spectrum, high-responsivity, and polarimetric-sensitive detection. Adv. Funct. Mater., 2023, 33(49): 2306077
CrossRef ADS Google scholar
[45]
Z. Mo, F. Zhang, D. Wang, B. Cui, Q. Xia, B. Li, J. He, M. Zhong. Ultrafast-response and broad-spectrum polarization sensitive photodetector based on Bi1.85In0.15S3 nanowire. Appl. Phys. Lett., 2022, 120(20): 201105
CrossRef ADS Google scholar
[46]
H. Chen, X. Zhou, L. Tang, Y. Chen, H. Luo, X. Yuan, C. R. Bowen, D. Zhang. HfO2-based ferroelectrics: From enhancing performance, material design, to applications. Appl. Phys. Rev., 2022, 9(1): 011307
CrossRef ADS Google scholar
[47]
H. Chen, L. Tang, H. Luo, X. Yuan, D. Zhang. Modulation of ferroelectricity in atomic layer deposited HfO2/ZrO2 multilayer films. Mater. Lett., 2022, 313: 131732
CrossRef ADS Google scholar
[48]
S. Lai, S. Byeon, S. K. Jang, J. Lee, B. H. Lee, J. H. Park, Y. H. Kim, S. Lee. HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. Nanoscale, 2018, 10(39): 18758
CrossRef ADS Google scholar
[49]
X. Fan, L. Zou, W. Chu, L. Wang, Y. Zhou. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition. Appl. Phys. Lett., 2023, 122(22): 222101
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1414-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1414-7.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. U23A20570 and 51902346), the Science and Technology Innovation Program of Hunan Province (“HuXiang Young Talents”, Grant No. 2021RC3021), the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region (Grant No. 2023D01D03), and the Natural Science Foundation of Hunan Province (Grant No. 2021JJ40780). This work was supported by Double Cs-corrected TEM Laboratory of the State Key Laboratory of Powder Metallurgy.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4100 KB)

Accesses

Citations

Detail

Sections
Recommended

/