
Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures
Wenlong Chu, Xilong Zhou, Ze Wang, Xiulian Fan, Xuehao Guo, Cheng Li, Jianling Yue, Fangping Ouyang, Jiong Zhao, Yu Zhou
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33212.
Stable alkali halide vapor assisted chemical vapor deposition of 2D HfSe2 templates and controllable oxidation of its heterostructures
Two-dimensional hafnium-based semiconductors and their heterostructures with native oxides have been shown unique physical properties and potential electronic and optoelectronic applications. However, the scalable synthesis methods for ultrathin layered hafnium-based semiconductor laterally epitaxy growth and its heterostructure are still restricted, also for the understanding of its formation mechanism. Herein, we report the stable sublimation of alkali halide vapor assisted synthesis strategy for high-quality 2D HfSe2 nanosheets via chemical vapor deposition. Single-crystalline ultrathin 2D HfSe2 nanosheets were systematically grown by tuning the growth parameters, reaching the lateral size of 6‒40 μm and the thickness down to 4.5 nm. The scalable amorphous HfO2 and HfSe2 heterostructures were achieved by the controllable oxidation, which benefited from the approximate zero Gibbs free energy of unstable 2D HfSe2 templates. The crystal structure, elemental, and time dependent Raman characterization were carried out to understand surface precipitated Se atoms and the formation of amorphous Hf−O bonds, confirming the slow surface oxidation and lattice incorporation of oxygen atoms. The relatively smooth surface roughness and electrical potential change of HfO2−HfSe2 heterostructures indicate the excellent interface quality, which helps obtain the high performance memristor with high on/off ratio of 105 and long retention period over 9000 s. Our work introduces a new vapor catalysts strategy for the synthesis of lateral 2D HfSe2 nanosheets, also providing the scalable oxidation of the Hf-based heterostructures for 2D electronic devices.
chemical vapor deposition / HfSe2−HfO2 / nanoelectronics
Fig.1 (a) Schematic diagram of remote alkali halide vapor assisted stable sublimation of high melting point hafnium dioxide for controlled synthesis of 2D HfSe2 nanosheets. The NaCl and HfO2 powder were arranged at the separated temperature of 780 °C, and 800 °C, respectively. (b) Schematic atomic structures of 1T-HfSe2 along the ab and bc crystal planes, also for its unit cell. (c) Typical optical image of the synthesized HfSe2 nanosheets on the mica substrate. (d) Raman spectra and (e) XRD pattern of the synthesized HfSe2 nanosheets. |
Fig.2 (a−e) Optical images of HfSe2 nanosheets grown on mica substrates at different growth temperatures: 800 °C, 820 °C, 840 °C, 870 °C, and 940 °C, respectively, under the argon flow rate of 30 sccm, Se temperature of 280 °C and growth time of 10 min. (f‒j) Corresponding representative AFM images. (k) Statistical graph of the thickness of HfSe2 nanosheets at different growth temperatures. (l) Statistical graphs of HfSe2 nanosheet domain sizes at different growth temperatures. |
Fig.3 (a) Low-resolution TEM image and (b) High-resolution TEM image of 2D HfSe2 nanosheet. (c) Corresponding selected-area electron diffraction pattern (SAED). (d) EDS elemental analysis spectra of 2D HfSe2 nanosheet and the inset shows the stoichiometric ratio of Hf and Se. (e) Dark-field TEM image of 2D HfSe2 nanosheet. (f, g) EDS mapping images of Hf and Se, respectively. |
Fig.4 (a) Schematic of natural oxidation of 2D HfSe2 nanosheets in air, forming Se clusters on the surface of HfO2‒HfSe2 heterostructure under the H2O and O2 atmosphere. (b) Schematic of the relative magnitudes of standard molar Gibbs free formation energies of HfSe2 and HfO2. (c) High-resolution TEM image of HfSe2 nanosheets after 48 h oxidation in air, and the inset image is the corresponding FFT of amorphous HfO2 structure. (d) Corresponding EDS elemental mapping for Hf, Se, and O, respectively. (e) Raman spectra of HfSe2 nanosheets naturally oxidized in air for different oxidation times. (f) Surface potentials comparison of 2D HfSe2 nanosheets before and after the oxidation. |
Fig.5 (a) Typical I−V switching curve of the HfO2‒HfSe2 heterostructure memristor with Cr/Au top electrode and Cr/Au bottom electrodes. The inset picture shows the schematic device structure. (b) Typical I−V switching curve of the HfO2‒HfSe2 heterostructure memristor with inert Au top electrode and Au bottom electrodes. The inset picture shows the schematic device structure. (c) Schematic mechanism diagram of oxygen vacancies dominated resistance change in the HfO2−HfSe2 heterostructure. (d) I−V switching curves of the HfO2−HfSe2 memristor under different limiting currents. (e) Holding characteristics of the high and low resistance states of the HfO2−HfSe2 memristor. (f) The multiple cycling stability measurement of the HfO2−HfSe2 memristor devices. |
[1] |
T.LiT.Tu Y.SunH. FuJ.YuL.XingZ.Wang H.WangR. JiaJ.WuC.TanY.Liang Y.ZhangC. ZhangY.DaiC.QiuM.Li R.HuangL. JiaoK.LaiB.YanP.Gao H.Peng, A native oxide high-κ gate dielectric for two-dimensional electronics, Nat. Electron. 3(8), 473 (2020)
|
[2] |
Y. Zhou, D. Wu, Y. Zhu, Y. Cho, Q. He, X. Yang, K. Herrera, Z. Chu, Y. Han, M. C. Downer, H. Peng, K. Lai. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 nanoflakes. Nano Lett., 2017, 17(9): 5508
CrossRef
ADS
Google scholar
|
[3] |
C. Chen, X. Chen, C. Wu, X. Wang, Y. Ping, X. Wei, X. Zhou, J. Lu, L. Zhu, J. Zhou, T. Zhai, J. Han, H. Xu. Air-stable 2D Cr5Te8 nanosheets with thickness-tunable ferromagnetism. Adv. Mater., 2022, 34(2): 2107512
CrossRef
ADS
Google scholar
|
[4] |
B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. Zhang, G. Sun, B. Zhao, H. Ma, R. Wu, Z. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. Xu, X. Duan, W. Ji, X. Duan. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
CrossRef
ADS
Google scholar
|
[5] |
X. Fan, R. Xin, L. Li, B. Zhang, C. Li, X. Zhou, H. Chen, H. Zhang, F. OuYang, Y. Zhou. Progress in the preparation and physical properties of two-dimensional Cr-based chalcogenide materials and heterojunctions. Front. Phys. 19, 2023,
CrossRef
ADS
Google scholar
|
[6] |
B. Lei, A. Li, W. Zhou, Y. Wang, W. Xiong, Y. Chen, F. Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2. Front. Phys. 19, 2024,
CrossRef
ADS
Google scholar
|
[7] |
X. Zhu, H. Liu, L. Liu, L. Ren, W. Li, L. Fang, X. Chen, L. Xie, Y. Jing, J. Chen, S. Liu, F. Ouyang, Y. Zhou, X. Xiong. Spin glass state in chemical vapor-deposited crystalline Cr2Se3 nanosheets. Chem. Mater., 2021, 33(10): 3851
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhou, C. Li, Y. Zhang, L. Wang, X. Fan, L. Zou, Z. Cai, J. Jiang, S. Zhou, B. Zhang, H. Zhang, W. Li, Z. Chen. Controllable thermochemical generation of active defects in the horizontal/vertical MoS2 for enhanced hydrogen evolution. Adv. Funct. Mater., 2023, 33(46): 2304302
CrossRef
ADS
Google scholar
|
[9] |
R. Xie, W. Luo, L. Zou, X. Fan, C. Li, T. Lv, J. Jiang, Z. Chen, Y. Zhou. Low-temperature synthesis of colloidal few-layer WTe2 nanostructures for electrochemical hydrogen evolution. Discover Nano, 2023, 18(1): 44
CrossRef
ADS
Google scholar
|
[10] |
Y. Zhou, J. L. Silva, J. M. Woods, J. V. Pondick, Q. Feng, Z. Liang, W. Liu, L. Lin, B. Deng, B. Brena, F. Xia, H. Peng, Z. Liu, H. Wang, C. M. Araujo, J. J. Cha. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater., 2018, 30(18): 1706076
CrossRef
ADS
Google scholar
|
[11] |
Y. Zhou, H. Jang, J. M. Woods, Y. Xie, P. Kumaravadivel, G. A. Pan, J. Liu, Y. Liu, D. G. Cahill, J. J. Cha. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv. Funct. Mater., 2017, 27(8): 1605928
CrossRef
ADS
Google scholar
|
[12] |
Y. Wen, Q. Wang, L. Yin, Q. Liu, F. Wang, F. Wang, Z. Wang, K. Liu, K. Xu, Y. Huang, T. A. Shifa, C. Jiang, J. Xiong, J. He. Epitaxial 2D PbS nanoplates arrays with highly efficient infrared response. Adv. Mater., 2016, 28(36): 8051
CrossRef
ADS
Google scholar
|
[13] |
G. Wu, L. Xiang, W. Wang, C. Yao, Z. Yan, C. Zhang, J. Wu, Y. Liu, B. Zheng, H. Liu, C. Hu, X. Sun, C. Zhu, Y. Wang, X. Xiong, Y. Wu, L. Gao, D. Li, A. Pan, S. Li. Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system. Sci. Bull. (Beijing), 2024, 69(4): 473
CrossRef
ADS
Google scholar
|
[14] |
H. Liu, C. Zhu, Y. Chen, X. Yi, X. Sun, Y. Liu, H. Wang, G. Wu, J. Wu, Y. Li, X. Zhu, D. Li, A. Pan. Polarization-sensitive photodetectors based on highly in-plane anisotropic violet phosphorus with large dichroic ratio. Adv. Funct. Mater., 2023, 34(17): 2314838
CrossRef
ADS
Google scholar
|
[15] |
X. Sun, C. Zhu, J. Yi, L. Xiang, C. Ma, H. Liu, B. Zheng, Y. Liu, W. You, W. Zhang, D. Liang, Q. Shuai, X. Zhu, H. Duan, L. Liao, Y. Liu, D. Li, A. Pan. Reconfigurable logic-in-memory architectures based on a two-dimensional van der Waals heterostructure device. Nat. Electron., 2022, 5(11): 752
CrossRef
ADS
Google scholar
|
[16] |
J. Zhu, L. Wang, J. Wu, Y. Liang, F. Xiao, B. Xu, Z. Zhang, X. Fan, Y. Zhou, J. Xia, Z. Wang. Achieving 1.2 fm/Hz1/2 displacement sensitivity with laser interferometry in two-dimensional nanomechanical resonators: Pathways towards quantum-noise-limited measurement at room temperature. Chin. Phys. Lett., 2023, 40(3): 038102
CrossRef
ADS
Google scholar
|
[17] |
B. Liu, W. Chu, S. Liu, Y. Zhou, L. Zou, J. Fu, M. Liu, X. Fu, F. Ouyang, Y. Zhou. Engineering the nanostructures of solution proceed In2SexS3−x films with enhanced near-infrared absorption for photoelectrochemical water splitting. J. Phys. D Appl. Phys., 2022, 55(43): 434004
CrossRef
ADS
Google scholar
|
[18] |
M. Li, H. Sun, J. Zhou, Y. Zhao. Engineering phonon thermal transport in few-layer PdSe2. Front. Phys. 19, 2023,
CrossRef
ADS
Google scholar
|
[19] |
T. Zhu, Y. Zhang, X. Wei, M. Jiang, H. Xu. The rise of two-dimensional tellurium for next-generation electronics and optoelectronics. Front. Phys., 2023, 18(3): 33601
CrossRef
ADS
Google scholar
|
[20] |
Y. Wang, X. Guo, S. You, J. Jiang, Z. Wang, F. Ouyang, H. Huang. Giant quartic-phonon decay in PVD-grown α-MoO3 flakes. Nano Res., 2023, 16(1): 1115
CrossRef
ADS
Google scholar
|
[21] |
S. H. Chae, Y. Jin, T. S. Kim, D. S. Chung, H. Na, H. Nam, H. Kim, D. J. Perello, H. Y. Jeong, T. H. Ly, Y. H. Lee. Oxidation effect in octahedral hafnium disulfide thin film. ACS Nano, 2016, 10(1): 1309
CrossRef
ADS
Google scholar
|
[22] |
M. J. Mleczko, C. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Köpe, R. G. Moore, Z. X. Shen, I. R. Fisher, Y. Nishi, E. Pop. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv., 2017, 3(8): e1700481
CrossRef
ADS
Google scholar
|
[23] |
W. Zhang, Z. Huang, W. Zhang, Y. Li. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res., 2014, 7(12): 1731
CrossRef
ADS
Google scholar
|
[24] |
G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, L. Colombo. Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9(10): 768
CrossRef
ADS
Google scholar
|
[25] |
N. Peimyoo, M. D. Barnes, J. D. Mehew, A. De Sanctis, I. Amit, J. Escolar, K. Anastasiou, A. P. Rooney, S. J. Haigh, S. Russo, M. F. Craciun, F. Withers. Laser-writable high-κ dielectric for van der Waals nanoelectronics. Sci. Adv., 2019, 5(1): eaau0906
CrossRef
ADS
Google scholar
|
[26] |
L. Yin, K. Xu, Y. Wen, Z. Wang, Y. Huang, F. Wang, T. A. Shifa, R. Cheng, H. Ma, J. He. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett., 2016, 109(21): 213105
CrossRef
ADS
Google scholar
|
[27] |
M. Kang, S. Rathi, I. Lee, D. Lim, J. Wang, L. Li, M. A. Khan, G. H. Kim. Electrical characterization of multilayer HfSe2 field-effect transistors on SiO2 substrate. Appl. Phys. Lett., 2015, 106(14): 143108
CrossRef
ADS
Google scholar
|
[28] |
M. Kang, S. Rathi, I. Lee, L. Li, M. A. Khan, D. Lim, Y. Lee, J. Park, S. J. Yun, D. H. Youn, C. Jun, G. H. Kim. Tunable electrical properties of multilayer HfSe2 field effect transistors by oxygen plasma treatment. Nanoscale, 2017, 9(4): 1645
CrossRef
ADS
Google scholar
|
[29] |
T.KangJ. ParkH.JungH.ChoiS.M. Lee N.LeeR. G. LeeG.KimS.H. KimH.Kim C.W. YangJ. JeonY.H. KimS.Lee, High-κ dielectric (HfO2)/2D semiconductor (HfSe2) gate stack for low-power steep-switching computing devices, Adv. Mater. 2312747, doi: 10.1002/adma.202312747 (2024)
|
[30] |
A. L. Hector, W. Levason, G. Reid, S. D. Reid, M. Webster. Evaluation of group 4 metal bis-cyclopentadienyl complexes with selenolate and tellurolate ligands for CVD of ME2 films (E = Se or Te). Chem. Mater., 2008, 20(15): 5100
CrossRef
ADS
Google scholar
|
[31] |
R. Yue, A. T. Barton, H. Zhu, A. Azcatl, L. F. Pena, J. Wang, X. Peng, N. Lu, L. Cheng, R. Addou, S. McDonnell, L. Colombo, J. W. P. Hsu, J. Kim, M. J. Kim, R. M. Wallace, C. L. Hinkle. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. ACS Nano, 2015, 9(1): 474
CrossRef
ADS
Google scholar
|
[32] |
K. E. Aretouli, P. Tsipas, D. Tsoutsou, J. Marquez-Velasco, E. Xenogiannopoulou, S. A. Giamini, E. Vassalou, N. Kelaidis, A. Dimoulas. Two-dimensional semiconductor HfSe2 and MoSe2/HfSe2 van der Waals heterostructures by molecular beam epitaxy. Appl. Phys. Lett., 2015, 106(14): 143105
CrossRef
ADS
Google scholar
|
[33] |
S. Li, M. E. Pam, Y. Li, L. Chen, Y. C. Chien, X. Fong, D. Chi, K. W. Ang. Wafer-scale 2D hafnium diselenide based memristor crossbar array for energy-efficient neural network hardware. Adv. Mater., 2022, 34(25): 2103376
CrossRef
ADS
Google scholar
|
[34] |
B. Zheng, Y. Chen, Z. Wang, F. Qi, Z. Huang, X. Hao, P. Li, W. Zhang, Y. Li. Vertically oriented few-layered HfS2 nanosheets: Growth mechanism and optical properties. 2D Mater., 2016, 3(3): 035024
CrossRef
ADS
Google scholar
|
[35] |
D. Wang, X. Zhang, H. Liu, J. Meng, J. Xia, Z. Yin, Y. Wang, J. You, X. M. Meng. Epitaxial growth of HfS2 on sapphire by chemical vapor deposition and application for photodetectors. 2D Mater., 2017, 4(3): 031012
CrossRef
ADS
Google scholar
|
[36] |
L. Fu, F. Wang, B. Wu, N. Wu, W. Huang, H. Wang, C. Jin, L. Zhuang, J. He, L. Fu, Y. Liu. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv. Mater., 2017, 29(32): 1700439
CrossRef
ADS
Google scholar
|
[37] |
W. Li, J. Zhou, S. Cai, Z. Yu, J. Zhang, N. Fang, T. Li, Y. Wu, T. Chen, X. Xie, H. Ma, K. Yan, N. Dai, X. Wu, H. Zhao, Z. Wang, D. He, L. Pan, Y. Shi, P. Wang, W. Chen, K. Nagashio, X. Duan, X. Wang. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron., 2019, 2(12): 563
CrossRef
ADS
Google scholar
|
[38] |
C. Li, R. Xin, C. Y. Jiao, Z. Zhang, J. Qin, W. Chu, X. Zhou, Z. Li, Z. Wang, J. Xia, Y. Zhou. Synthesis of hetero-site nucleation twisted bilayer MoS2 by local airflow perturbations and interlayer angle characterization. J. Cent. South Univ., 2023, 30(10): 3187
CrossRef
ADS
Google scholar
|
[39] |
X. Zhu, L. Wong, X. Fan, J. Zhao, Y. Zhou, F. Ouyang. Role of the spatial distribution of gas flow for tuning the vertical/planar growth of nonlayered two-dimensional nanoplates. Cryst. Growth Des., 2022, 22(1): 763
CrossRef
ADS
Google scholar
|
[40] |
W. Chu, R. Xin, L. Zou, X. Fan, X. Zhou, C. Li, Y. Zhou. Synthesis of nonlayered 2D α-Fe2O3 nanosheets by ultralow concentration precursor with Se catalysts design. Phys. Status Solidi R., 2023, 2023: 2300102
CrossRef
ADS
Google scholar
|
[41] |
D. Wang, X. Zhang, G. Guo, S. Gao, X. Li, J. Meng, Z. Yin, H. Liu, M. Gao, L. Cheng, J. You, R. Wang. Large-area synthesis of layered HfS2(1−x)Se2x alloys with fully tunable chemical compositions and bandgaps. Adv. Mater., 2018, 30(44): 1803285
CrossRef
ADS
Google scholar
|
[42] |
Q. Yao, L. Zhang, P. Bampoulis, H. J. W. Zandvliet. Nanoscale investigation of defects and oxidation of HfSe2. J. Phys. Chem. C, 2018, 122(44): 25498
CrossRef
ADS
Google scholar
|
[43] |
F. Cui, X. Zhao, B. Tang, L. Zhu, Y. Huan, Q. Chen, Z. Liu, Y. Zhang. Epitaxial growth of step-like Cr2S3 lateral homojunctions towards versatile conduction polarities and enhanced transistor performances. Small, 2022, 18(4): 2105744
CrossRef
ADS
Google scholar
|
[44] |
F. Zhang, Z. Mo, B. Cui, S. Liu, Q. Xia, B. Li, L. Li, Z. Zhang, J. He, M. Zhong. Bandgap engineering of BiIns nanowire for wide-spectrum, high-responsivity, and polarimetric-sensitive detection. Adv. Funct. Mater., 2023, 33(49): 2306077
CrossRef
ADS
Google scholar
|
[45] |
Z. Mo, F. Zhang, D. Wang, B. Cui, Q. Xia, B. Li, J. He, M. Zhong. Ultrafast-response and broad-spectrum polarization sensitive photodetector based on Bi1.85In0.15S3 nanowire. Appl. Phys. Lett., 2022, 120(20): 201105
CrossRef
ADS
Google scholar
|
[46] |
H. Chen, X. Zhou, L. Tang, Y. Chen, H. Luo, X. Yuan, C. R. Bowen, D. Zhang. HfO2-based ferroelectrics: From enhancing performance, material design, to applications. Appl. Phys. Rev., 2022, 9(1): 011307
CrossRef
ADS
Google scholar
|
[47] |
H. Chen, L. Tang, H. Luo, X. Yuan, D. Zhang. Modulation of ferroelectricity in atomic layer deposited HfO2/ZrO2 multilayer films. Mater. Lett., 2022, 313: 131732
CrossRef
ADS
Google scholar
|
[48] |
S. Lai, S. Byeon, S. K. Jang, J. Lee, B. H. Lee, J. H. Park, Y. H. Kim, S. Lee. HfO2/HfS2 hybrid heterostructure fabricated via controllable chemical conversion of two-dimensional HfS2. Nanoscale, 2018, 10(39): 18758
CrossRef
ADS
Google scholar
|
[49] |
X. Fan, L. Zou, W. Chu, L. Wang, Y. Zhou. Synthesis of high resistive two-dimensional nonlayered Cr2S3 nanoflakes with stable phosphorus dopants by chemical vapor deposition. Appl. Phys. Lett., 2023, 122(22): 222101
CrossRef
ADS
Google scholar
|
Supplementary files
fop-24417-of-zhouyu_suppl_1 (4237 KB)
/
〈 |
|
〉 |