Unidirectional propagation of water waves near ancient Luoyang Bridge
Linkang Han, Qilin Duan, Junliang Duan, Shan Zhu, Shiming Chen, Yuhang Yin, Huanyang Chen
Unidirectional propagation of water waves near ancient Luoyang Bridge
Metasurfaces and metagratings offer new platforms for electromagnetic wave control with significant responses. However, metasurfaces based on abrupt phase change and resonant structures suffer from the drawback of high loss and face challenges when applied in water waves. Therefore, the application of metasurfaces in water wave control is not ideal due to the limitations associated with high loss and other challenges. We have discovered that non-resonant metagratings exhibit promising effects in water wave control. Leveraging the similarity between bridges and metagratings, we have successfully developed a water wave metagrating model inspired by the ancient Luoyang Bridge in China. We conduct theoretical calculations and simulations on the metagrating and derive the equivalent anisotropic model of the metagrating. This model provides evidence that the metagrating has the capability to control water waves and achieve unidirectional surface water wave. The accuracy of our theory is strongly supported by the clear observation of the unidirectional propagation phenomenon during simulation and experiments conducted using a reduced version of the metagrating. It is the first time that the unidirectional propagation of water waves has been seen in water wave metagrating experiment. Above all, we realize the water wave metagrating experiment for the first time. By combining complex gratings with real bridges, we explore the physics embedded in the ancient building — Luoyang Bridge, which are of great significance for the water wave metagrating design and provide a new method for analyzing the effects of water waves on bridges. At the same time, this discovery also provides a new idea for ocean cargo transportation, ocean garbage cleaning, and the development and protection of ancient bridges.
Luoyang Bridge / unidirectional propagation / water wave metagratings / equivalent anisotropic model
[1] |
H.LambHydrodynamics
|
[2] |
C.C. Mei, The Applied Dynamics of Ocean Surface Waves, Singapore: World Scientific, 1989
|
[3] |
B. Wilks, F. Montiel, S. Wakes. Rainbow reflection and broadband energy absorption of water waves by graded arrays of vertical barriers. J. Fluid Mech., 2022, 941: A26
CrossRef
ADS
Google scholar
|
[4] |
L. Rayleigh. On the remarkable phenomenon of crystalline reflexion described by Prof. Stokes. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1888, 26(160): 256
CrossRef
ADS
Google scholar
|
[5] |
S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486
CrossRef
ADS
Google scholar
|
[6] |
E. Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059
CrossRef
ADS
Google scholar
|
[7] |
J.D. JoannopoulosP.R. VilleneuveS.Fan, Photonic crystals, Solid State Commun. 102(2−3), 165 (1997)
|
[8] |
J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312(5781): 1780
CrossRef
ADS
Google scholar
|
[9] |
U. Leonhardt. Optical conformal mapping. Science, 2006, 312(5781): 1777
CrossRef
ADS
Google scholar
|
[10] |
H. Y. Chen, C. T. Chan, P. Sheng. Transformation optics and metamaterials. Nat. Mater., 2010, 9(5): 387
CrossRef
ADS
Google scholar
|
[11] |
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977
CrossRef
ADS
Google scholar
|
[12] |
S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 2012, 11(5): 426
CrossRef
ADS
Google scholar
|
[13] |
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334(6054): 333
CrossRef
ADS
Google scholar
|
[14] |
M. Khorasaninejad, W. T. Chen, D. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science, 2016, 352(6290): 1190
CrossRef
ADS
Google scholar
|
[15] |
M. Khorasaninejad, F. Capasso. Metalenses: Versatile multifunctional photonic components. Science, 2017, 358(6367): eaam8100
CrossRef
ADS
Google scholar
|
[16] |
G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 2015, 10(4): 308
CrossRef
ADS
Google scholar
|
[17] |
See the Electronic Supplemental Materials for more information.
|
[18] |
X.HuY.Shen X.LiuR. FuJ.Zi, Superlensing effect in liquid surface waves, Phys. Rev. E 69, 030201(R) (2004)
|
[19] |
J. Mei, C. Qiu, J. Shi, Z. Liu. Highly directional liquid surface wave source based on resonant cavity. Phys. Lett. A, 2009, 373(33): 2948
CrossRef
ADS
Google scholar
|
[20] |
M. Farhat, S. Enoch, S. Guenneau, A. B. Movchan. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Phys. Rev. Lett., 2008, 101(13): 134501
CrossRef
ADS
Google scholar
|
[21] |
S. Y. Zou, Y. D. Xu, R. F. Zatianina, C. Li, X. Liang, L. Zhu, Y. Zhang, G. Liu, Q. H. Liu, H. Chen, Z. Wang. Broadband waveguide cloak for water waves. Phys. Rev. Lett., 2019, 123(7): 074501
CrossRef
ADS
Google scholar
|
[22] |
H. Chen, J. Yang, J. Zi, C. T. Chan. Transformation media for linear liquid surface waves. Europhys. Lett., 2009, 85(2): 24004
CrossRef
ADS
Google scholar
|
[23] |
Z. Wang, P. Zhang, X. Nie, Y. Zhang. Manipulating water wave propagation via gradient index media. Sci. Rep., 2015, 5(1): 16846
CrossRef
ADS
Google scholar
|
[24] |
C. Zhang, C. T. Chan, X. Hu. Broadband focusing and collimation of water waves by zero refractive index. Sci. Rep., 2014, 4: 6979
CrossRef
ADS
Google scholar
|
[25] |
C. Li, L. Xu, L. Zhu, S. Zou, Q. H. Liu, Z. Wang, H. Chen. Concentrators for water waves. Phys. Rev. Lett., 2018, 121(10): 104501
CrossRef
ADS
Google scholar
|
[26] |
X. Zhao, X. Hu, J. Zi. Fast water waves in stationary surface disk arrays. Phys. Rev. Lett., 2021, 127(25): 254501
CrossRef
ADS
Google scholar
|
[27] |
S. Chen, Y. Zhou, Z. Wang, H. Chen. Metagrating in ancient Luoyang Bridge. Europhys. Lett., 2020, 132(2): 24003
CrossRef
ADS
Google scholar
|
[28] |
Z.L. DengS. ZhangG.P. Wang, A facile grating approach towards broadband wide-angle and highefficiency holographic metasurfaces, Nanoscale 8(3), 1588 (2016)
|
[29] |
Y. Ra’di, D. L. Sounas, A. Alù. Metagratings beyond the limits of graded metasurfaces for wave front control. Phys. Rev. Lett., 2017, 119(6): 067404
CrossRef
ADS
Google scholar
|
[30] |
A. Wu, H. Li, J. Du, X. Ni, Z. Ye, Y. Wang, Z. Sheng, S. Zou, F. Gan, X. Zhang, X. Wang. Experimental demonstration of in-plane negative-angle refraction with an array of silicon nanoposts. Nano Lett., 2015, 15(3): 2055
CrossRef
ADS
Google scholar
|
[31] |
R.Paniagua-DomínguezY.F. YuE.KhaidarovS.ChoiV.LeongR.M. BakkerX.LiangY.H. FuV.Valuckas L.A. KrivitskyA.I. Kuznetsov, A metalens with a near-unity numerical aperture, Nano Lett. 18(3), 2124 (2018)
|
[32] |
M. Khorasaninejad, A. Ambrosio, P. Kanhaiya, F. Capasso. Broadband and chiral binary dielectric metaholograms. Sci. Adv., 2016, 2(5): e1501258
CrossRef
ADS
Google scholar
|
[33] |
P. Genevet, J. Lin, M. A. Kats, F. Capasso. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun., 2012, 3(1): 1278
CrossRef
ADS
Google scholar
|
[34] |
Y. Y. Cao, Y. Y. Fu, Q. J. Zhou, X. Ou, L. Gao, H. Chen, Y. Xu. Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces. Phys. Rev. Appl., 2019, 12(2): 024006
CrossRef
ADS
Google scholar
|
[35] |
N. Mohammadi Estakhri, A. Alù. Wave-front transformation with gradient metasurfaces. Phys. Rev. X, 2016, 6(4): 041008
CrossRef
ADS
Google scholar
|
[36] |
V. S. Asadchy, M. Albooyeh, S. N. Tcvetkova, A. Díaz-Rubio, Y. Ra’di, S. A. Tretyakov. Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B, 2016, 94(7): 075142
CrossRef
ADS
Google scholar
|
[37] |
A. Epstein, G. V. Eleftheriades. Synthesis of passive lossless metasurfaces using auxiliary fields for reflectionless beam splitting and perfect reflection. Phys. Rev. Lett., 2016, 117(25): 256103
CrossRef
ADS
Google scholar
|
[38] |
Y. Y. Fu, C. Shen, Y. Y. Cao, L. Gao, H. Chen, C. T. Chan, S. A. Cummer, Y. Xu. Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun., 2019, 10(1): 2326
CrossRef
ADS
Google scholar
|
[39] |
Y. Ra’di, D. L. Sounas, A. Alù. Metagratings: beyond the limits of graded. metasurfaces for wave front control. Phys. Rev. Lett., 2017, 119(6): 067404
CrossRef
ADS
Google scholar
|
[40] |
|
[41] |
Z.J. DaiQ. Chen, Fujian Ancient Architecture, Beijing: People’s Education Press, 2019
|
[42] |
Y. Xu, Y. Fu, H. Chen. Planar gradient metamaterials. Nat. Rev. Mater., 2016, 1(12): 16067
CrossRef
ADS
Google scholar
|
[43] |
L. Han, S. Chen, H. Chen. Water wave polaritons. Phys. Rev. Lett., 2022, 128(20): 204501
CrossRef
ADS
Google scholar
|
[44] |
X. Hu, C. T. Chan, K. M. Ho, J. Zi. Negative effective gravity in water waves by periodic resonator arrays. Phys. Rev. Lett., 2011, 106(17): 174501
CrossRef
ADS
Google scholar
|
[45] |
G.B. Airy, in: Encyclopaedia Metropolitana, edited by H. J. Rose, et al., London: Taylor, 1841
|
[46] |
A. D. D. Craik. The origins of water wave theory. Annu. Rev. Fluid Mech., 2004, 36: 1
CrossRef
ADS
Google scholar
|
[47] |
F. J. Rodríguez-Fortuño, G. Marino, P. Ginzburg, D. O’Connor, A. Martínez, G. A. Wurtz, A. V. Zayats. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science, 2013, 340(6130): 328
CrossRef
ADS
Google scholar
|
[48] |
F. J. Garcia-Vidal, L. Martin-Moreno, J. B. Pendry. Surfaces with holes in them: New plasmonic metamaterials. J. Opt. A, 2005, 7(2): S97
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |