Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy

Haoyu Dong, Songyang Li, Shuo Mi, Jianfeng Guo, Zhaxi Suonan, Hanxiang Wu, Yanyan Geng, Manyu Wang, Huiwen Xu, Li Guan, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng

PDF(16723 KB)
PDF(16723 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (6) : 63201. DOI: 10.1007/s11467-024-1409-4
RESEARCH ARTICLE

Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy

Author information +
History +

Abstract

The van der Waals interface structures and behaviors are of great importance in determining the physical properties of two-dimensional atomic crystals and their heterostructures. The delicate interfacial properties are sensitively dependent on the mechanical behaviors of atomically thin films under external strain. Here, we investigated the strain-engineered rippling structures at the CVD-grown bilayer-MoS2 interface with advanced atomic force microscopy (AFM). The in-plane compressive strain is sequentially introduced into the 1L-substrate and 2L-1L interface of bilayer-MoS2 flakes via a fast-cooling process. The thermal strain-engineered rippling structures were directly visualized at the central 2H- and 3R-MoS2 bilayer regions with friction force microscopy (FFM) and bimodal AFM techniques. These rippling structures can be further artificially manipulated into the beating-like rippling features and fully erased via the contact mode AFM scanning. Our results shed lights on the strain-engineered interfacial structures of two-dimensional materials and also inspire the further investigation on the interface engineering of their electronic and optical properties.

Graphical abstract

Keywords

rippling / interface / strain-engineered / atomic force microscopy / transition metal dichalcogenides

Cite this article

Download citation ▾
Haoyu Dong, Songyang Li, Shuo Mi, Jianfeng Guo, Zhaxi Suonan, Hanxiang Wu, Yanyan Geng, Manyu Wang, Huiwen Xu, Li Guan, Fei Pang, Wei Ji, Rui Xu, Zhihai Cheng. Strain-engineered rippling at the bilayer-MoS2 interface identified by advanced atomic force microscopy. Front. Phys., 2024, 19(6): 63201 https://doi.org/10.1007/s11467-024-1409-4

References

[1]
H. T. Yuan, H. T. Wang, Y. Cui. Two-dimensional layered chalcogenides: From rational synthesis to property control via orbital occupation and electron filling. Acc. Chem. Res., 2015, 48(1): 81
CrossRef ADS Google scholar
[2]
S. Hussain, K. Q. Xu, S. L. Ye, L. Lei, X. M. Liu, R. Xu, L. M. Xie, Z. H. Cheng. Local electrical characterization of two-dimensional materials with functional atomic force microscopy. Front. Phys., 2019, 14(3): 33401
CrossRef ADS Google scholar
[3]
Z.LinA. McCrearyN.BriggsS.SubramanianK.H. Zhang Y.F. SunX. F. LiN.J. BorysH.T. YuanS.K. Fullerton-ShireyA.ChernikovH.ZhaoS.McDonnellA.M. LindenbergK.XiaoB.J. LeRoy M.DrndicJ. C. M. HwangJ.ParkM.ChhowallaR.E. SchaakA.JaveyM.C. HersamJ.Robinson M.Terrones, 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications, 2D Mater. 3(4), 042001 (2017)
[4]
G. Plechinger, A. Castellanos-Gomez, M. Buscema, H. S. J. van der Zant, G. A. Steele, A. Kuc, T. Heine, C. Schuller, T. Korn. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater., 2015, 2(1): 015006
CrossRef ADS Google scholar
[5]
S. Bertolazzi, J. Brivio, A. Kis. Stretching and breaking of ultrathin MoS2. ACS Nano, 2011, 5(12): 9703
CrossRef ADS Google scholar
[6]
P. Johari, V. B. Shenoy. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano, 2012, 6(6): 5449
CrossRef ADS Google scholar
[7]
A. McCreary, R. Ghosh, M. Amani, J. Wang, K. A. N. Duerloo, A. Sharma, K. Jarvis, E. J. Reed, A. M. Dongare, S. K. Banerjee, M. Terrones, R. R. Namburu, M. Dubey. Effects of uniaxial and biaxial strain on few-layered terrace structures of MoS2 grown by vapor transport. ACS Nano, 2016, 10(3): 3186
CrossRef ADS Google scholar
[8]
J. W. Wang, L. Q. He, Y. H. Zhang, H. Y. Nong, S. N. Li, Q. K. Wu, J. Y. Tan, B. L. Liu. Locally strained 2D materials: Preparation, properties, and applications. Adv. Mater., 2024, 2024: 2314145
CrossRef ADS Google scholar
[9]
R. Xu, Y. Lun, L. Meng, F. Pang, Y. Pan, Z. Zheng, L. Lei, S. Hussain, Y. J. Li, Y. Sugawara, J. Hong, W. Ji, Z. Cheng. Visualization of strain-engineered nanopattern in center-confined mesoscopic WS2 monolayer flakes. J. Phys. Chem. C, 2022, 126(16): 7184
CrossRef ADS Google scholar
[10]
L. Lei, J. Q. Dai, H. Y. Dong, Y. Y. Geng, F. Y. Cao, C. Wang, R. Xu, F. Pang, Z. X. Liu, F. S. Li, Z. H. Cheng, G. Wang, W. Ji. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe2 monolayers. Nat. Commun., 2023, 14(1): 6320
CrossRef ADS Google scholar
[11]
K. K. Liu, W. J. Zhang, Y. H. Lee, Y. C. Lin, M. T. Chang, C. Su, C. S. Chang, H. Li, Y. M. Shi, H. Zhang, C. S. Lai, L. J. Li. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett., 2012, 12(3): 1538
CrossRef ADS Google scholar
[12]
B. L. Liu, M. Fathi, L. Chen, A. Abbas, Y. Q. Ma, C. W. Zhou. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study. ACS Nano, 2015, 9(6): 6119
CrossRef ADS Google scholar
[13]
Y. H. Lee, X. Q. Zhang, W. J. Zhang, M. T. Chang, C. T. Lin, K. D. Chang, Y. C. Yu, J. T. W. Wang, C. S. Chang, L. J. Li, T. W. Lin. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24(17): 2320
CrossRef ADS Google scholar
[14]
H. Zeng, Y. Wen, L. Yin, R. Q. Cheng, H. Wang, C. S. Liu, J. He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
CrossRef ADS Google scholar
[15]
R. Xu, F. Pang, Y. H. Pan, Y. Z. Lun, L. Meng, Z. Y. Zheng, K. Q. Xu, L. Lei, S. Hussain, Y. J. Li, Y. Sugawara, J. W. Hong, W. Ji, Z. H. Cheng. Atomically asymmetric inversion scales up to mesoscopic single-crystal monolayer flakes. ACS Nano, 2020, 14(10): 13834
CrossRef ADS Google scholar
[16]
R. Xu, S. L. Ye, K. Q. Xu, L. Lei, S. Hussain, Z. Y. Zheng, F. Pang, S. Y. Xing, X. M. Liu, W. Ji, Z. H. Cheng. Nanoscale charge transfer and diffusion at the MoS2/SiO2 interface by atomic force microscopy: Contact injection versus triboelectrification. Nanotechnology, 2018, 29(35): 355701
CrossRef ADS Google scholar
[17]
K. Chen, X. Wan, J. X. Wen, W. G. Xie, Z. W. Kang, X. L. Zeng, H. J. Chen, J. B. Xu. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano, 2015, 9(10): 9868
CrossRef ADS Google scholar
[18]
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, K. S. Novoselov. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
CrossRef ADS Google scholar
[19]
B. Hunt, J. D. Sanchez-Yamagishi, A. F. Young, M. Yankowitz, B. J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R. C. Ashoori. Massive dirac fermions and hofstadter butterfly in a van der Waals heterostructure. Science, 2013, 340(6139): 1427
CrossRef ADS Google scholar
[20]
K.S. NovoselovA.MishchenkoA.Carvalho A.H. Castro Neto, 2D materials and van der Waals heterostructures, Science 353(6298), aac9439 (2016)
[21]
R. Xu, X. S. Wang, Z. Y. Zheng, S. L. Ye, K. Q. Xu, L. Lei, S. Hussain, F. Pang, X. M. Liu, Y. J. Li, Y. Sugawara, W. Ji, L. M. Xie, Z. H. Cheng. Interfacial water intercalation-induced metal−insulator transition in NbS2/BN heterostructure. Nanotechnology, 2019, 30(20): 205702
CrossRef ADS Google scholar
[22]
A. F. Rigosi, H. M. Hill, Y. Li, A. Chernikov, T. F. Heinz. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett., 2015, 15(8): 5033
CrossRef ADS Google scholar
[23]
K. Liu, Q. M. Yan, M. Chen, W. Fan, Y. H. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, J. Q. Wu. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett., 2014, 14(9): 5097
CrossRef ADS Google scholar
[24]
V. M. Pereira, A. H. Castro Neto. Strain engineering of graphene’s electronic structure. Phys. Rev. Lett., 2009, 103(4): 046801
CrossRef ADS Google scholar
[25]
G. H. Ahn, M. Amani, H. Rasool, D. H. Lien, J. P. Mastandrea, J. W. III Ager, M. Dubey, D. C. Chrzan, A. M. Minor, A. Javey. Strain-engineered growth of two-dimensional materials. Nat. Commun., 2017, 8(1): 608
CrossRef ADS Google scholar
[26]
S. Deng, A. V. Sumant, V. Berry. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today, 2018, 22: 14
CrossRef ADS Google scholar
[27]
A. Castellanos-Gomez, R. Roldan, E. Cappelluti, M. Buscema, F. Guinea, H. S. J. van der Zant, G. A. Steele. Local strain engineering in atomically thin MoS2. Nano Lett., 2013, 13(11): 5361
CrossRef ADS Google scholar
[28]
Y. Y. Hui, X. F. Liu, W. J. Jie, N. Y. Chan, J. H. Hao, Y. T. Hsu, L. J. Li, W. L. Guo, S. P. Lau. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano, 2013, 7(8): 7126
CrossRef ADS Google scholar
[29]
M. S. Kim, S. J. Yun, Y. Lee, C. Seo, G. H. Han, K. K. Kim, Y. H. Lee, J. Kim. Biexciton emission from edges and grain boundaries of triangular WS2 monolayers. ACS Nano, 2016, 10(2): 2399
CrossRef ADS Google scholar
[30]
W. S. Yun, S. W. Han, S. C. Hong, I. G. Kim, J. D. Lee. Thickness and strain effects on electronic structures of transition metal dichalcogenides:2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B, 2012, 85(3): 033305
CrossRef ADS Google scholar
[31]
K. P. Dhakal, S. Roy, H. Jang, X. Chen, W. S. Yun, H. Kim, J. Lee, J. Kim, J. H. Ahn. Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater., 2017, 29(12): 5124
CrossRef ADS Google scholar
[32]
A. Ramasubramaniam, D. Naveh, E. Towe. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B, 2011, 84(20): 205325
CrossRef ADS Google scholar
[33]
X. Hu, P. Yasaei, J. Jokisaari, S. Ogut, A. Salehi-Khojin, R. F. Klie. Mapping thermal expansion coefficients in freestanding 2D materials at the nanometer scale. Phys. Rev. Lett., 2018, 120(5): 055902
CrossRef ADS Google scholar
[34]
L. N. Zhang, Z. M. Lu, Y. Song, L. Zhao, B. Bhatia, K. R. Bagnall, E. N. Wang. Thermal Expansion Coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano Lett., 2019, 19(7): 4745
CrossRef ADS Google scholar
[35]
L. Lei, Y. Z. Lun, F. Y. Cao, L. Meng, S. Y. Xing, J. F. Guo, H. Y. Dong, S. Z. Gu, K. Q. Xu, S. Hussain, Y. J. Li, Y. Sugawara, F. Pang, W. Ji, J. W. Hong, R. Xu, Z. H. Cheng. Size-dependent strain-engineered nanostructures in MoS2 monolayer investigated by atomic force microscopy. Nanotechnology, 2021, 32(46): 465703
CrossRef ADS Google scholar
[36]
K. Q. Xu, Y. H. Pan, S. L. Ye, L. Lei, S. Hussain, Q. M. Wang, Z. Y. Yang, X. M. Liu, W. Ji, R. Xu, Z. H. Cheng. Shear anisotropy-driven crystallographic orientation imaging in flexible hexagonal two-dimensional atomic crystals. Appl. Phys. Lett., 2019, 115(6): 063101
CrossRef ADS Google scholar
[37]
S. Hussain, R. Xu, K. Q. Xu, L. Lei, S. Y. Xing, J. F. Guo, H. Y. Dong, A. Liaqat, R. Iqbal, M. A. Iqbal, S. Z. Gu, F. Y. Cao, Y. J. Li, Y. Sugawara, F. Pang, W. Ji, L. M. Xie, S. S. Chen, Z. H. Cheng. Toplayer-dependent crystallographic orientation imaging in the bilayer two-dimensional materials with transverse shear microscopy. Front. Phys., 2021, 16(5): 53504
CrossRef ADS Google scholar
[38]
F. Pang, F. Y. Cao, L. Lei, L. Meng, S. L. Ye, S. Y. Xing, J. F. Guo, H. Y. Dong, S. Hussain, S. Z. Gu, K. Q. Xu, Y. J. Li, Y. Sugawara, W. Ji, R. Xu, Z. H. Cheng. Strain-engineered rippling and manipulation of single-layer WS2 by atomic force microscopy. J. Phys. Chem. C, 2021, 125(16): 8696
CrossRef ADS Google scholar
[39]
S. Hussain, R. Xu, K. Q. Xu, L. Lei, L. Meng, Z. Y. Zheng, S. Y. Xing, J. F. Guo, H. Y. Dong, A. Liaqat, M. A. Iqbal, Y. J. Li, Y. Sugawara, F. Pang, W. Ji, L. M. Xie, Z. H. Cheng. Strain-induced hierarchical ripples in MoS2 layers investigated by atomic force microscopy. Appl. Phys. Lett., 2020, 117(15): 153102
CrossRef ADS Google scholar
[40]
S. Benaglia, C. A. Amo, R. Garcia. Fast, quantitative and high resolution mapping of viscoelastic properties with bimodal AFM. Nanoscale, 2019, 11(32): 15289
CrossRef ADS Google scholar
[41]
Z. Y. Zheng, R. Xu, K. Q. Xu, S. L. Ye, F. Pang, L. Lei, S. Hussain, X. M. Liu, W. Ji, Z. H. Cheng. Real-space visualization of intercalated water phases at the hydrophobic graphene interface with atomic force microscopy. Front. Phys., 2020, 15(2): 23601
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1409-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1409-4.

Acknowledgements

This project was supported by the National Key R&D Program of China (MOST) (Grant Nos. 2023YFA1406500 and 2018YFE0202700), the National Natural Science Foundation of China (NSFC) (Nos. 21622304, 61674045, 11604063, 11974422, and 12104504), the Strategic Priority Research Program (Chinese Academy of Sciences, CAS) (No. XDB30000000), and the Fundamental Research Funds for the Central Universities and the Research Funds of Renmin University of China [Nos. 21XNLG27 (Z.C.) and 22XNH095 (H.D.)]. Y. Y. Geng was supported by the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(16723 KB)

Accesses

Citations

Detail

Sections
Recommended

/