Hardware-efficient quantum principal component analysis for medical image recognition
Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu
Hardware-efficient quantum principal component analysis for medical image recognition
Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.
quantum simulation / quantum principal component analysis / nuclear magnetic resonance
[1] |
T.M. Mitchell, Machine Learning, Vol. 1, New York: McGraw-Hill, 1997
|
[2] |
M. I. Jordan, T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
CrossRef
ADS
Google scholar
|
[3] |
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová. Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
CrossRef
ADS
Google scholar
|
[4] |
B. J. Erickson, P. Korfiatis, Z. Akkus, T. L. Kline. Machine learning for medical imaging. Radiographics, 2017, 37(2): 505
CrossRef
ADS
Google scholar
|
[5] |
M. L. Giger. Machine learning in medical imaging. J. Am. Coll. Radiol., 2018, 15(3): 512
CrossRef
ADS
Google scholar
|
[6] |
S. Wang, C. Li, R. Wang, Z. Liu, M. Wang, H. Tan, Y. Wu, X. Liu, H. Sun, R. Yang, X. Liu, J. Chen, H. Zhou, I. Ben Ayed, H. Zheng. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun., 2021, 12(1): 5915
CrossRef
ADS
Google scholar
|
[7] |
Y. C. Chiu, S. Zheng, L. J. Wang, B. S. Iskra, M. K. Rao, P. J. Houghton, Y. Huang, Y. Chen. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci. Adv., 2021, 7(34): eabh1275
CrossRef
ADS
Google scholar
|
[8] |
J. Witowski, L. Heacock, B. Reig, S. K. Kang, A. Lewin, K. Pysarenko, S. Patel, N. Samreen, W. Rudnicki, E. Łuczyńska, T. Popiela, L. Moy, K. J. Geras. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med., 2022, 14(664): eabo4802
CrossRef
ADS
Google scholar
|
[9] |
N. M. Thomasian, I. R. Kamel, H. X. Bai. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2): 81
CrossRef
ADS
Google scholar
|
[10] |
U. J. Schoepf, A. C. Schneider, M. Das, S. A. Wood, J. I. Cheema, P. Costello. Pulmonary embolism: Computer-aided detection at multidetector row spiral computed tomography. J. Thorac. Imaging, 2007, 22(4): 319
CrossRef
ADS
Google scholar
|
[11] |
M. M. Dundar, G. Fung, B. Krishnapuram, R. B. Rao. Multiple-instance learning algorithms for computer-aided detection. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015
CrossRef
ADS
Google scholar
|
[12] |
H. P. Chan, S. C. B. Lo, B. Sahiner, K. L. Lam, M. A. Helvie. Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10): 1555
CrossRef
ADS
Google scholar
|
[13] |
S. Bauer, R. Wiest, L. P. Nolte, M. Reyes. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13): R97
CrossRef
ADS
Google scholar
|
[14] |
T. M. Mitchell, S. V. Shinkareva, A. Carlson, K. M. Chang, V. L. Malave, R. A. Mason, M. A. Just. Predicting human brain activity associated with the meanings of nouns. Science, 2008, 320(5880): 1191
CrossRef
ADS
Google scholar
|
[15] |
C. Davatzikos, Y. Fan, X. Wu, D. Shen, S. M. Resnick. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4): 514
CrossRef
ADS
Google scholar
|
[16] |
D. Kim, J. Burge, T. Lane, G. D. Pearlson, K. A. Kiehl, V. D. Calhoun. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage, 2008, 42(4): 1560
CrossRef
ADS
Google scholar
|
[17] |
W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, L. Xiong, H. Zhou, Y. Guo, Y. Zeng, H. Shi, L. Wang, Y. Xue, Z. Wang. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12): 1197
CrossRef
ADS
Google scholar
|
[18] |
A. J. Rodriguez-Morales, J. A. Cardona-Ospina, E. Guti’errez-Ocampo, R. Villamizar-Penã, Y. Holguin-Rivera, J. P. Escalera-Antezana, L. E. Alvarado-Arnez, D. K. Bonilla-Aldana, C. Franco-Paredes, A. F. Henao-Martinez, A. Paniz-Mondolfi, G. J. Lagos-Grisales, E. Ramírez-Vallejo, J. A. Suárez, L. I. Zambrano, W. E. Villamil-Gómez, G. J. Balbin-Ramon, A. A. Rabaan, H. Harapan, K. Dhama, H. Nishiura, H. Kataoka, T. Ahmad, R. Sah. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34: 101623
CrossRef
ADS
Google scholar
|
[19] |
H. Shi, X. Han, N. Jiang, Y. Cao, O. Alwalid, J. Gu, Y. Fan, C. Zheng. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis., 2020, 20(4): 425
CrossRef
ADS
Google scholar
|
[20] |
K. C. Liu, P. Xu, W. F. Lv, X. H. Qiu, J. L. Yao, J. F. Gu, W. Wei. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. Eur. J. Radiol., 2020, 126: 108941
CrossRef
ADS
Google scholar
|
[21] |
F. P. M. Schuld, I. Sinayskiy, F. Petruccione. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2): 172
CrossRef
ADS
Google scholar
|
[22] |
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd. Quantum machine learning. Nature, 2017, 549(7671): 195
CrossRef
ADS
Google scholar
|
[23] |
C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, L. Wossnig. Quantum machine learning: A classical perspective. Proc. Royal Soc. A, 2018, 474(2209): 20170551
CrossRef
ADS
Google scholar
|
[24] |
P. Rebentrost, M. Mohseni, S. Lloyd. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
CrossRef
ADS
Google scholar
|
[25] |
Z. Li, X. Liu, N. Xu, J. Du. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
CrossRef
ADS
Google scholar
|
[26] |
I. Kerenidis, A. Prakash, D. Szilágyi. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: 427
CrossRef
ADS
Google scholar
|
[27] |
P. L. Dallaire-Demers, N. Killoran. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
CrossRef
ADS
Google scholar
|
[28] |
C. Zoufal, A. Lucchi, S. Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf., 2019, 5: 103
CrossRef
ADS
Google scholar
|
[29] |
H. L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M. H. Hsieh, H. Deng, H. Rong, C. Z. Peng, C. Y. Lu, Y. A. Chen, D. Tao, X. Zhu, J. W. Pan. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl., 2021, 16(2): 024051
CrossRef
ADS
Google scholar
|
[30] |
A. W. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
CrossRef
ADS
Google scholar
|
[31] |
J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, J. Du. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A, 2014, 89(2): 022313
CrossRef
ADS
Google scholar
|
[32] |
D. W. Berry. High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor., 2014, 47(10): 105301
CrossRef
ADS
Google scholar
|
[33] |
D. W. Berry, A. M. Childs, A. Ostrander, G. Wang. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 2017, 356(3): 1057
CrossRef
ADS
Google scholar
|
[34] |
T. Xin, S. Wei, J. Cui, J. Xiao, I. Arrazola, L. Lamata, X. Kong, D. Lu, E. Solano, G. Long. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A, 2020, 101(3): 032307
CrossRef
ADS
Google scholar
|
[35] |
G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
CrossRef
ADS
Google scholar
|
[36] |
L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, L. Sun. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
CrossRef
ADS
Google scholar
|
[37] |
Y. Liu, S. Arunachalam, K. Temme. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 2021, 17(9): 1013
CrossRef
ADS
Google scholar
|
[38] |
S. Lloyd, M. Mohseni, P. Rebentrost. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
CrossRef
ADS
Google scholar
|
[39] |
T. Xin, L. Che, C. Xi, A. Singh, X. Nie, J. Li, Y. Dong, D. Lu. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
CrossRef
ADS
Google scholar
|
[40] |
Z. Li, Z. Chai, Y. Guo, W. Ji, M. Wang, F. Shi, Y. Wang, S. Lloyd, J. Du. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
CrossRef
ADS
Google scholar
|
[41] |
Z. Li, H. Zhou, C. Ju, H. Chen, W. Zheng, D. Lu, X. Rong, C. Duan, X. Peng, J. Du. Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett., 2014, 112(22): 220501
CrossRef
ADS
Google scholar
|
[42] |
Z. Li, X. Liu, H. Wang, S. Ashhab, J. Cui, H. Chen, I. Peng, J. Du. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
CrossRef
ADS
Google scholar
|
[43] |
M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O’Keeffe, C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz, M. Marvian, A. Melville, B. M. Niedzielski, Y. Sung, R. Winik, J. Yoder, D. Rosenberg, K. Obenland, S. Lloyd, T. P. Orlando, I. Marvian, S. Gustavsson, W. D. Oliver. Demonstration of density matrix exponentiation using a superconducting quantum processor. Phys. Rev. X, 2022, 12(1): 011005
CrossRef
ADS
Google scholar
|
[44] |
S. Pal, N. Nishad, T. S. Mahesh, G. J. Sreejith. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett., 2018, 120(18): 180602
CrossRef
ADS
Google scholar
|
[45] |
K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, R. M. Serra, E. Lutz. Experimental validation of fully quantum fluctuation theorems using dynamic Bayesian networks. Phys. Rev. Lett., 2021, 127(18): 180603
CrossRef
ADS
Google scholar
|
[46] |
R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira, N. G. de Almeida. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 2019, 122(24): 240602
CrossRef
ADS
Google scholar
|
[47] |
Z. Zhang, X. Long, X. Zhao, Z. Lin, K. Tang, H. Liu, X. Yang, X. Nie, J. Wu, J. Li, T. Xin, K. Li, D. Lu. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
CrossRef
ADS
Google scholar
|
[48] |
C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, C. Negrevergne. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 2002, 418(6893): 59
CrossRef
ADS
Google scholar
|
[49] |
Z. Li, M. H. Yung, H. Chen, D. Lu, J. D. Whitfield, X. Peng, A. Aspuru-Guzik, J. Du. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep., 2011, 1: 88
CrossRef
ADS
Google scholar
|
[50] |
T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira, M. Paternostro, E. Lutz, R. M. Serra. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 2015, 115(19): 190601
CrossRef
ADS
Google scholar
|
[51] |
T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R. M. Serra. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
CrossRef
ADS
Google scholar
|
[52] |
V. Giovannetti, S. Lloyd, L. Maccone. Quantum random access memory. Phys. Rev. Lett., 2008, 100(16): 160501
CrossRef
ADS
Google scholar
|
[53] |
W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, J. Xiong, H. Zhou, K. Guo, Y. Zeng, H. Chi, L. Wang, Y. Xue, Z. Wang. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4: 1197
CrossRef
ADS
Google scholar
|
[54] |
M.A. TurkA. P. Pentland, in: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1991, pp 586–587
|
[55] |
J. Li, D. Lu, Z. Luo, R. Laflamme, X. Peng, J. Du. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Phys. Rev. A, 2016, 94(1): 012312
CrossRef
ADS
Google scholar
|
[56] |
X. Nie, X. Zhu, K. Huang, K. Tang, X. Long, Z. Lin, Y. Tian, C. Qiu, C. Xi, X. Yang, J. Li, Y. Dong, T. Xin, D. Lu. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
CrossRef
ADS
Google scholar
|
[57] |
T. Xin, Y. Li, Y. A. Fan, X. Zhu, Y. Zhang, X. Nie, J. Li, Q. Liu, D. Lu. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator. Phys. Rev. Lett., 2020, 125(9): 090502
CrossRef
ADS
Google scholar
|
[58] |
K. Micadei, J. P. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, E. Lutz. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
CrossRef
ADS
Google scholar
|
[59] |
S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D, 2015, 69(12): 279
CrossRef
ADS
Google scholar
|
[60] |
P. de Fouquieres, S. G. Schirmer, S. J. Glaser, I. Kuprov. Second order gradient ascent pulse engineering. J. Magn. Reson., 2011, 212(2): 412
CrossRef
ADS
Google scholar
|
[61] |
G. E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
CrossRef
ADS
Google scholar
|
[62] |
H. Abdi, L. J. Williams. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(4): 433
CrossRef
ADS
Google scholar
|
[63] |
J. Li, X. Yang, X. Peng, C. P. Sun. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
CrossRef
ADS
Google scholar
|
[64] |
D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, J. Baugh, B. Zeng, R. Laflamme. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
CrossRef
ADS
Google scholar
|
[65] |
S. T. Flammia, Y. K. Liu. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett., 2011, 106(23): 230501
CrossRef
ADS
Google scholar
|
[66] |
M. P. da Silva, O. Landon-Cardinal, D. Poulin. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 2011, 107(21): 210404
CrossRef
ADS
Google scholar
|
[67] |
S. Lloyd. Universal quantum simulators. Science, 1996, 273(5278): 1073
CrossRef
ADS
Google scholar
|
[68] |
N. A. Gershenfeld, I. L. Chuang. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
CrossRef
ADS
Google scholar
|
[69] |
D. Lu, H. Li, D. A. Trottier, J. Li, A. Brodutch, A. P. Krismanich, A. Ghavami, G. I. Dmitrienko, G. Long, J. Baugh, R. Laflamme. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
CrossRef
ADS
Google scholar
|
[70] |
G. Feng, F. H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh, R. Laflamme. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys. Rev. A, 2018, 98(5): 052341
CrossRef
ADS
Google scholar
|
[71] |
T. Xin, X. Nie, X. Kong, J. Wen, D. Lu, J. Li. Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |