Hardware-efficient quantum principal component analysis for medical image recognition

Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu

PDF(5917 KB)
PDF(5917 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51202. DOI: 10.1007/s11467-024-1391-x
RESEARCH ARTICLE

Hardware-efficient quantum principal component analysis for medical image recognition

Author information +
History +

Abstract

Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.

Graphical abstract

Keywords

quantum simulation / quantum principal component analysis / nuclear magnetic resonance

Cite this article

Download citation ▾
Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu. Hardware-efficient quantum principal component analysis for medical image recognition. Front. Phys., 2024, 19(5): 51202 https://doi.org/10.1007/s11467-024-1391-x

References

[1]
T.M. Mitchell, Machine Learning, Vol. 1, New York: McGraw-Hill, 1997
[2]
M. I. Jordan, T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
CrossRef ADS Google scholar
[3]
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová. Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
CrossRef ADS Google scholar
[4]
B. J. Erickson, P. Korfiatis, Z. Akkus, T. L. Kline. Machine learning for medical imaging. Radiographics, 2017, 37(2): 505
CrossRef ADS Google scholar
[5]
M. L. Giger. Machine learning in medical imaging. J. Am. Coll. Radiol., 2018, 15(3): 512
CrossRef ADS Google scholar
[6]
S. Wang, C. Li, R. Wang, Z. Liu, M. Wang, H. Tan, Y. Wu, X. Liu, H. Sun, R. Yang, X. Liu, J. Chen, H. Zhou, I. Ben Ayed, H. Zheng. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun., 2021, 12(1): 5915
CrossRef ADS Google scholar
[7]
Y. C. Chiu, S. Zheng, L. J. Wang, B. S. Iskra, M. K. Rao, P. J. Houghton, Y. Huang, Y. Chen. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci. Adv., 2021, 7(34): eabh1275
CrossRef ADS Google scholar
[8]
J. Witowski, L. Heacock, B. Reig, S. K. Kang, A. Lewin, K. Pysarenko, S. Patel, N. Samreen, W. Rudnicki, E. Łuczyńska, T. Popiela, L. Moy, K. J. Geras. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med., 2022, 14(664): eabo4802
CrossRef ADS Google scholar
[9]
N. M. Thomasian, I. R. Kamel, H. X. Bai. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2): 81
CrossRef ADS Google scholar
[10]
U. J. Schoepf, A. C. Schneider, M. Das, S. A. Wood, J. I. Cheema, P. Costello. Pulmonary embolism: Computer-aided detection at multidetector row spiral computed tomography. J. Thorac. Imaging, 2007, 22(4): 319
CrossRef ADS Google scholar
[11]
M. M. Dundar, G. Fung, B. Krishnapuram, R. B. Rao. Multiple-instance learning algorithms for computer-aided detection. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015
CrossRef ADS Google scholar
[12]
H. P. Chan, S. C. B. Lo, B. Sahiner, K. L. Lam, M. A. Helvie. Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10): 1555
CrossRef ADS Google scholar
[13]
S. Bauer, R. Wiest, L. P. Nolte, M. Reyes. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13): R97
CrossRef ADS Google scholar
[14]
T. M. Mitchell, S. V. Shinkareva, A. Carlson, K. M. Chang, V. L. Malave, R. A. Mason, M. A. Just. Predicting human brain activity associated with the meanings of nouns. Science, 2008, 320(5880): 1191
CrossRef ADS Google scholar
[15]
C. Davatzikos, Y. Fan, X. Wu, D. Shen, S. M. Resnick. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4): 514
CrossRef ADS Google scholar
[16]
D. Kim, J. Burge, T. Lane, G. D. Pearlson, K. A. Kiehl, V. D. Calhoun. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage, 2008, 42(4): 1560
CrossRef ADS Google scholar
[17]
W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, L. Xiong, H. Zhou, Y. Guo, Y. Zeng, H. Shi, L. Wang, Y. Xue, Z. Wang. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12): 1197
CrossRef ADS Google scholar
[18]
A. J. Rodriguez-Morales, J. A. Cardona-Ospina, E. Guti’errez-Ocampo, R. Villamizar-Penã, Y. Holguin-Rivera, J. P. Escalera-Antezana, L. E. Alvarado-Arnez, D. K. Bonilla-Aldana, C. Franco-Paredes, A. F. Henao-Martinez, A. Paniz-Mondolfi, G. J. Lagos-Grisales, E. Ramírez-Vallejo, J. A. Suárez, L. I. Zambrano, W. E. Villamil-Gómez, G. J. Balbin-Ramon, A. A. Rabaan, H. Harapan, K. Dhama, H. Nishiura, H. Kataoka, T. Ahmad, R. Sah. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34: 101623
CrossRef ADS Google scholar
[19]
H. Shi, X. Han, N. Jiang, Y. Cao, O. Alwalid, J. Gu, Y. Fan, C. Zheng. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis., 2020, 20(4): 425
CrossRef ADS Google scholar
[20]
K. C. Liu, P. Xu, W. F. Lv, X. H. Qiu, J. L. Yao, J. F. Gu, W. Wei. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. Eur. J. Radiol., 2020, 126: 108941
CrossRef ADS Google scholar
[21]
F. P. M. Schuld, I. Sinayskiy, F. Petruccione. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2): 172
CrossRef ADS Google scholar
[22]
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd. Quantum machine learning. Nature, 2017, 549(7671): 195
CrossRef ADS Google scholar
[23]
C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, L. Wossnig. Quantum machine learning: A classical perspective. Proc. Royal Soc. A, 2018, 474(2209): 20170551
CrossRef ADS Google scholar
[24]
P. Rebentrost, M. Mohseni, S. Lloyd. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
CrossRef ADS Google scholar
[25]
Z. Li, X. Liu, N. Xu, J. Du. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
CrossRef ADS Google scholar
[26]
I. Kerenidis, A. Prakash, D. Szilágyi. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: 427
CrossRef ADS Google scholar
[27]
P. L. Dallaire-Demers, N. Killoran. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
CrossRef ADS Google scholar
[28]
C. Zoufal, A. Lucchi, S. Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf., 2019, 5: 103
CrossRef ADS Google scholar
[29]
H. L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M. H. Hsieh, H. Deng, H. Rong, C. Z. Peng, C. Y. Lu, Y. A. Chen, D. Tao, X. Zhu, J. W. Pan. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl., 2021, 16(2): 024051
CrossRef ADS Google scholar
[30]
A. W. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
CrossRef ADS Google scholar
[31]
J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, J. Du. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A, 2014, 89(2): 022313
CrossRef ADS Google scholar
[32]
D. W. Berry. High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor., 2014, 47(10): 105301
CrossRef ADS Google scholar
[33]
D. W. Berry, A. M. Childs, A. Ostrander, G. Wang. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 2017, 356(3): 1057
CrossRef ADS Google scholar
[34]
T. Xin, S. Wei, J. Cui, J. Xiao, I. Arrazola, L. Lamata, X. Kong, D. Lu, E. Solano, G. Long. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A, 2020, 101(3): 032307
CrossRef ADS Google scholar
[35]
G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
CrossRef ADS Google scholar
[36]
L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, L. Sun. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
CrossRef ADS Google scholar
[37]
Y. Liu, S. Arunachalam, K. Temme. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 2021, 17(9): 1013
CrossRef ADS Google scholar
[38]
S. Lloyd, M. Mohseni, P. Rebentrost. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
CrossRef ADS Google scholar
[39]
T. Xin, L. Che, C. Xi, A. Singh, X. Nie, J. Li, Y. Dong, D. Lu. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
CrossRef ADS Google scholar
[40]
Z. Li, Z. Chai, Y. Guo, W. Ji, M. Wang, F. Shi, Y. Wang, S. Lloyd, J. Du. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
CrossRef ADS Google scholar
[41]
Z. Li, H. Zhou, C. Ju, H. Chen, W. Zheng, D. Lu, X. Rong, C. Duan, X. Peng, J. Du. Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett., 2014, 112(22): 220501
CrossRef ADS Google scholar
[42]
Z. Li, X. Liu, H. Wang, S. Ashhab, J. Cui, H. Chen, I. Peng, J. Du. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
CrossRef ADS Google scholar
[43]
M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O’Keeffe, C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz, M. Marvian, A. Melville, B. M. Niedzielski, Y. Sung, R. Winik, J. Yoder, D. Rosenberg, K. Obenland, S. Lloyd, T. P. Orlando, I. Marvian, S. Gustavsson, W. D. Oliver. Demonstration of density matrix exponentiation using a superconducting quantum processor. Phys. Rev. X, 2022, 12(1): 011005
CrossRef ADS Google scholar
[44]
S. Pal, N. Nishad, T. S. Mahesh, G. J. Sreejith. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett., 2018, 120(18): 180602
CrossRef ADS Google scholar
[45]
K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, R. M. Serra, E. Lutz. Experimental validation of fully quantum fluctuation theorems using dynamic Bayesian networks. Phys. Rev. Lett., 2021, 127(18): 180603
CrossRef ADS Google scholar
[46]
R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira, N. G. de Almeida. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 2019, 122(24): 240602
CrossRef ADS Google scholar
[47]
Z. Zhang, X. Long, X. Zhao, Z. Lin, K. Tang, H. Liu, X. Yang, X. Nie, J. Wu, J. Li, T. Xin, K. Li, D. Lu. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
CrossRef ADS Google scholar
[48]
C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, C. Negrevergne. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 2002, 418(6893): 59
CrossRef ADS Google scholar
[49]
Z. Li, M. H. Yung, H. Chen, D. Lu, J. D. Whitfield, X. Peng, A. Aspuru-Guzik, J. Du. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep., 2011, 1: 88
CrossRef ADS Google scholar
[50]
T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira, M. Paternostro, E. Lutz, R. M. Serra. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 2015, 115(19): 190601
CrossRef ADS Google scholar
[51]
T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R. M. Serra. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
CrossRef ADS Google scholar
[52]
V. Giovannetti, S. Lloyd, L. Maccone. Quantum random access memory. Phys. Rev. Lett., 2008, 100(16): 160501
CrossRef ADS Google scholar
[53]
W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, J. Xiong, H. Zhou, K. Guo, Y. Zeng, H. Chi, L. Wang, Y. Xue, Z. Wang. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4: 1197
CrossRef ADS Google scholar
[54]
M.A. TurkA. P. Pentland, in: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1991, pp 586–587
[55]
J. Li, D. Lu, Z. Luo, R. Laflamme, X. Peng, J. Du. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Phys. Rev. A, 2016, 94(1): 012312
CrossRef ADS Google scholar
[56]
X. Nie, X. Zhu, K. Huang, K. Tang, X. Long, Z. Lin, Y. Tian, C. Qiu, C. Xi, X. Yang, J. Li, Y. Dong, T. Xin, D. Lu. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
CrossRef ADS Google scholar
[57]
T. Xin, Y. Li, Y. A. Fan, X. Zhu, Y. Zhang, X. Nie, J. Li, Q. Liu, D. Lu. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator. Phys. Rev. Lett., 2020, 125(9): 090502
CrossRef ADS Google scholar
[58]
K. Micadei, J. P. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, E. Lutz. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
CrossRef ADS Google scholar
[59]
S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D, 2015, 69(12): 279
CrossRef ADS Google scholar
[60]
P. de Fouquieres, S. G. Schirmer, S. J. Glaser, I. Kuprov. Second order gradient ascent pulse engineering. J. Magn. Reson., 2011, 212(2): 412
CrossRef ADS Google scholar
[61]
G. E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
CrossRef ADS Google scholar
[62]
H. Abdi, L. J. Williams. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(4): 433
CrossRef ADS Google scholar
[63]
J. Li, X. Yang, X. Peng, C. P. Sun. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
CrossRef ADS Google scholar
[64]
D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, J. Baugh, B. Zeng, R. Laflamme. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
CrossRef ADS Google scholar
[65]
S. T. Flammia, Y. K. Liu. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett., 2011, 106(23): 230501
CrossRef ADS Google scholar
[66]
M. P. da Silva, O. Landon-Cardinal, D. Poulin. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 2011, 107(21): 210404
CrossRef ADS Google scholar
[67]
S. Lloyd. Universal quantum simulators. Science, 1996, 273(5278): 1073
CrossRef ADS Google scholar
[68]
N. A. Gershenfeld, I. L. Chuang. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
CrossRef ADS Google scholar
[69]
D. Lu, H. Li, D. A. Trottier, J. Li, A. Brodutch, A. P. Krismanich, A. Ghavami, G. I. Dmitrienko, G. Long, J. Baugh, R. Laflamme. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
CrossRef ADS Google scholar
[70]
G. Feng, F. H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh, R. Laflamme. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys. Rev. A, 2018, 98(5): 052341
CrossRef ADS Google scholar
[71]
T. Xin, X. Nie, X. Kong, J. Wen, D. Lu, J. Li. Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-024-1391-x and https://journal.hep.com.cn/fop/EN/10.1007/s11467-024-1391-x.

Acknowledgements

We thank Y. Peng for helpful discussion and suggestions about CT-image discrimination methods. This work was supported by the National Key Research and Development Program of China (No. 2019YFA0308100), the National Natural Science Foundation of China (Nos. 12075110 and 12104213), the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos. KQTD20190929173815000 and JCYJ20200109140803865), Pengcheng Scholars, Guangdong Innovative and Entrepreneurial Research Team Program (No. 2019ZT08C044), and Guangdong Provincial Key Laboratory (No. 2019B121203002), Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110987).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5917 KB)

Accesses

Citations

Detail

Sections
Recommended

/