
Hardware-efficient quantum principal component analysis for medical image recognition
Zidong Lin, Hongfeng Liu, Kai Tang, Yidai Liu, Liangyu Che, Xinyue Long, Xiangyu Wang, Yu-ang Fan, Keyi Huang, Xiaodong Yang, Tao Xin, Xinfang Nie, Dawei Lu
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 51202.
Hardware-efficient quantum principal component analysis for medical image recognition
Principal component analysis (PCA) is a widely used tool in machine learning algorithms, but it can be computationally expensive. In 2014, Lloyd, Mohseni & Rebentrost proposed a quantum PCA (qPCA) algorithm [Nat. Phys. 10, 631 (2014)] that has not yet been experimentally demonstrated due to challenges in preparing multiple quantum state copies and implementing quantum phase estimations. In this study, we presented a hardware-efficient approach for qPCA, utilizing an iterative approach that effectively resets the relevant qubits in a nuclear magnetic resonance (NMR) quantum processor. Additionally, we introduced a quantum scattering circuit that efficiently determines the eigenvalues and eigenvectors (principal components). As an important application of PCA, we focused on classifying thoracic CT images from COVID-19 patients and achieved high accuracy in image classification using the qPCA circuit implemented on the NMR system. Our experiment highlights the potential of near-term quantum devices to accelerate qPCA, opening up new avenues for practical applications of quantum machine learning algorithms.
quantum simulation / quantum principal component analysis / nuclear magnetic resonance
Fig.1 PCA-based medical image recognition and the corresponding qPCA circuits. (a) Flowchart illustrating the application of PCA for identifying lung CT images. The information of the CT images is encoded in the covariance matrix, which captures the interdependencies among different data components. Classically, principal components are obtained using iterative eigen-algorithms, e.g., power iteration, allowing for dimension reduction by projecting the data onto the subspace spanned by these principal components. (b) Quantum circuit for extracting the eigenvalues of the data matrix |
Fig.2 Data loading and the experimental quantum circuit in the 4-qubit NMR system. (a) Training dataset comprises one positive and one negative CT image from the iCTFT database. Each image is flattened into a |
Fig.3 Experimental eigenvalues obtained by the hardware-efficient qPCA approach. (a) Training set images for Group 1 experiment. The left and right images are randomly sampled from lung CT images of negative and positive patients, respectively. Clear textures are observed in the healthy lung CT image, while the diseased lung CT image exhibits a hazy shadow. (b) Magnitude of the probe qubit’s |
Fig.4 Experimental eigenvectors and the iterative process. (a) Experimental results of the eigenvectors for Group 1 (left panel) and Group 2 (right panel). The coefficients of |
Fig.5 Classification of lung CT images after qPCA. (a) Classification results for Group 1. After performing qPCA, each CT image in the dataset is projected onto a two-dimensional space spanned by the two experimental eigenvectors |
[1] |
T.M. Mitchell, Machine Learning, Vol. 1, New York: McGraw-Hill, 1997
|
[2] |
M. I. Jordan, T. M. Mitchell. Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
CrossRef
ADS
Google scholar
|
[3] |
G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborová. Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
CrossRef
ADS
Google scholar
|
[4] |
B. J. Erickson, P. Korfiatis, Z. Akkus, T. L. Kline. Machine learning for medical imaging. Radiographics, 2017, 37(2): 505
CrossRef
ADS
Google scholar
|
[5] |
M. L. Giger. Machine learning in medical imaging. J. Am. Coll. Radiol., 2018, 15(3): 512
CrossRef
ADS
Google scholar
|
[6] |
S. Wang, C. Li, R. Wang, Z. Liu, M. Wang, H. Tan, Y. Wu, X. Liu, H. Sun, R. Yang, X. Liu, J. Chen, H. Zhou, I. Ben Ayed, H. Zheng. Annotation-efficient deep learning for automatic medical image segmentation. Nat. Commun., 2021, 12(1): 5915
CrossRef
ADS
Google scholar
|
[7] |
Y. C. Chiu, S. Zheng, L. J. Wang, B. S. Iskra, M. K. Rao, P. J. Houghton, Y. Huang, Y. Chen. Predicting and characterizing a cancer dependency map of tumors with deep learning. Sci. Adv., 2021, 7(34): eabh1275
CrossRef
ADS
Google scholar
|
[8] |
J. Witowski, L. Heacock, B. Reig, S. K. Kang, A. Lewin, K. Pysarenko, S. Patel, N. Samreen, W. Rudnicki, E. Łuczyńska, T. Popiela, L. Moy, K. J. Geras. Improving breast cancer diagnostics with deep learning for MRI. Sci. Transl. Med., 2022, 14(664): eabo4802
CrossRef
ADS
Google scholar
|
[9] |
N. M. Thomasian, I. R. Kamel, H. X. Bai. Machine intelligence in non-invasive endocrine cancer diagnostics. Nat. Rev. Endocrinol., 2022, 18(2): 81
CrossRef
ADS
Google scholar
|
[10] |
U. J. Schoepf, A. C. Schneider, M. Das, S. A. Wood, J. I. Cheema, P. Costello. Pulmonary embolism: Computer-aided detection at multidetector row spiral computed tomography. J. Thorac. Imaging, 2007, 22(4): 319
CrossRef
ADS
Google scholar
|
[11] |
M. M. Dundar, G. Fung, B. Krishnapuram, R. B. Rao. Multiple-instance learning algorithms for computer-aided detection. IEEE Trans. Biomed. Eng., 2008, 55(3): 1015
CrossRef
ADS
Google scholar
|
[12] |
H. P. Chan, S. C. B. Lo, B. Sahiner, K. L. Lam, M. A. Helvie. Computer‐aided detection of mammographic microcalcifications: Pattern recognition with an artificial neural network. Med. Phys., 1995, 22(10): 1555
CrossRef
ADS
Google scholar
|
[13] |
S. Bauer, R. Wiest, L. P. Nolte, M. Reyes. A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol., 2013, 58(13): R97
CrossRef
ADS
Google scholar
|
[14] |
T. M. Mitchell, S. V. Shinkareva, A. Carlson, K. M. Chang, V. L. Malave, R. A. Mason, M. A. Just. Predicting human brain activity associated with the meanings of nouns. Science, 2008, 320(5880): 1191
CrossRef
ADS
Google scholar
|
[15] |
C. Davatzikos, Y. Fan, X. Wu, D. Shen, S. M. Resnick. Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiol. Aging, 2008, 29(4): 514
CrossRef
ADS
Google scholar
|
[16] |
D. Kim, J. Burge, T. Lane, G. D. Pearlson, K. A. Kiehl, V. D. Calhoun. Hybrid ICA–Bayesian network approach reveals distinct effective connectivity differences in schizophrenia. Neuroimage, 2008, 42(4): 1560
CrossRef
ADS
Google scholar
|
[17] |
W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, L. Xiong, H. Zhou, Y. Guo, Y. Zeng, H. Shi, L. Wang, Y. Xue, Z. Wang. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4(12): 1197
CrossRef
ADS
Google scholar
|
[18] |
A. J. Rodriguez-Morales, J. A. Cardona-Ospina, E. Guti’errez-Ocampo, R. Villamizar-Penã, Y. Holguin-Rivera, J. P. Escalera-Antezana, L. E. Alvarado-Arnez, D. K. Bonilla-Aldana, C. Franco-Paredes, A. F. Henao-Martinez, A. Paniz-Mondolfi, G. J. Lagos-Grisales, E. Ramírez-Vallejo, J. A. Suárez, L. I. Zambrano, W. E. Villamil-Gómez, G. J. Balbin-Ramon, A. A. Rabaan, H. Harapan, K. Dhama, H. Nishiura, H. Kataoka, T. Ahmad, R. Sah. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med. Infect. Dis., 2020, 34: 101623
CrossRef
ADS
Google scholar
|
[19] |
H. Shi, X. Han, N. Jiang, Y. Cao, O. Alwalid, J. Gu, Y. Fan, C. Zheng. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: A descriptive study. Lancet Infect. Dis., 2020, 20(4): 425
CrossRef
ADS
Google scholar
|
[20] |
K. C. Liu, P. Xu, W. F. Lv, X. H. Qiu, J. L. Yao, J. F. Gu, W. Wei. CT manifestations of coronavirus disease-2019: A retrospective analysis of 73 cases by disease severity. Eur. J. Radiol., 2020, 126: 108941
CrossRef
ADS
Google scholar
|
[21] |
F. P. M. Schuld, I. Sinayskiy, F. Petruccione. An introduction to quantum machine learning. Contemp. Phys., 2015, 56(2): 172
CrossRef
ADS
Google scholar
|
[22] |
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd. Quantum machine learning. Nature, 2017, 549(7671): 195
CrossRef
ADS
Google scholar
|
[23] |
C. Ciliberto, M. Herbster, A. D. Ialongo, M. Pontil, A. Rocchetto, S. Severini, L. Wossnig. Quantum machine learning: A classical perspective. Proc. Royal Soc. A, 2018, 474(2209): 20170551
CrossRef
ADS
Google scholar
|
[24] |
P. Rebentrost, M. Mohseni, S. Lloyd. Quantum support vector machine for big data classification. Phys. Rev. Lett., 2014, 113(13): 130503
CrossRef
ADS
Google scholar
|
[25] |
Z. Li, X. Liu, N. Xu, J. Du. Experimental realization of a quantum support vector machine. Phys. Rev. Lett., 2015, 114(14): 140504
CrossRef
ADS
Google scholar
|
[26] |
I. Kerenidis, A. Prakash, D. Szilágyi. Quantum algorithms for second-order cone programming and support vector machines. Quantum, 2021, 5: 427
CrossRef
ADS
Google scholar
|
[27] |
P. L. Dallaire-Demers, N. Killoran. Quantum generative adversarial networks. Phys. Rev. A, 2018, 98(1): 012324
CrossRef
ADS
Google scholar
|
[28] |
C. Zoufal, A. Lucchi, S. Woerner. Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Inf., 2019, 5: 103
CrossRef
ADS
Google scholar
|
[29] |
H. L. Huang, Y. Du, M. Gong, Y. Zhao, Y. Wu, C. Wang, S. Li, F. Liang, J. Lin, Y. Xu, R. Yang, T. Liu, M. H. Hsieh, H. Deng, H. Rong, C. Z. Peng, C. Y. Lu, Y. A. Chen, D. Tao, X. Zhu, J. W. Pan. Experimental quantum generative adversarial networks for image generation. Phys. Rev. Appl., 2021, 16(2): 024051
CrossRef
ADS
Google scholar
|
[30] |
A. W. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
CrossRef
ADS
Google scholar
|
[31] |
J. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, J. Du. Experimental realization of quantum algorithm for solving linear systems of equations. Phys. Rev. A, 2014, 89(2): 022313
CrossRef
ADS
Google scholar
|
[32] |
D. W. Berry. High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor., 2014, 47(10): 105301
CrossRef
ADS
Google scholar
|
[33] |
D. W. Berry, A. M. Childs, A. Ostrander, G. Wang. Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys., 2017, 356(3): 1057
CrossRef
ADS
Google scholar
|
[34] |
T. Xin, S. Wei, J. Cui, J. Xiao, I. Arrazola, L. Lamata, X. Kong, D. Lu, E. Solano, G. Long. Quantum algorithm for solving linear differential equations: Theory and experiment. Phys. Rev. A, 2020, 101(3): 032307
CrossRef
ADS
Google scholar
|
[35] |
G. Carleo, M. Troyer. Solving the quantum many-body problem with artificial neural networks. Science, 2017, 355(6325): 602
CrossRef
ADS
Google scholar
|
[36] |
L. Hu, S. H. Wu, W. Cai, Y. Ma, X. Mu, Y. Xu, H. Wang, Y. Song, D. L. Deng, C. L. Zou, L. Sun. Quantum generative adversarial learning in a superconducting quantum circuit. Sci. Adv., 2019, 5(1): eaav2761
CrossRef
ADS
Google scholar
|
[37] |
Y. Liu, S. Arunachalam, K. Temme. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys., 2021, 17(9): 1013
CrossRef
ADS
Google scholar
|
[38] |
S. Lloyd, M. Mohseni, P. Rebentrost. Quantum principal component analysis. Nat. Phys., 2014, 10(9): 631
CrossRef
ADS
Google scholar
|
[39] |
T. Xin, L. Che, C. Xi, A. Singh, X. Nie, J. Li, Y. Dong, D. Lu. Experimental quantum principal component analysis via parametrized quantum circuits. Phys. Rev. Lett., 2021, 126(11): 110502
CrossRef
ADS
Google scholar
|
[40] |
Z. Li, Z. Chai, Y. Guo, W. Ji, M. Wang, F. Shi, Y. Wang, S. Lloyd, J. Du. Resonant quantum principal component analysis. Sci. Adv., 2021, 7(34): eabg2589
CrossRef
ADS
Google scholar
|
[41] |
Z. Li, H. Zhou, C. Ju, H. Chen, W. Zheng, D. Lu, X. Rong, C. Duan, X. Peng, J. Du. Experimental realization of a compressed quantum simulation of a 32-spin Ising chain. Phys. Rev. Lett., 2014, 112(22): 220501
CrossRef
ADS
Google scholar
|
[42] |
Z. Li, X. Liu, H. Wang, S. Ashhab, J. Cui, H. Chen, I. Peng, J. Du. Quantum simulation of resonant transitions for solving the eigenproblem of an effective water Hamiltonian. Phys. Rev. Lett., 2019, 122(9): 090504
CrossRef
ADS
Google scholar
|
[43] |
M. Kjaergaard, M. E. Schwartz, A. Greene, G. O. Samach, A. Bengtsson, M. O’Keeffe, C. M. McNally, J. Braumüller, D. K. Kim, P. Krantz, M. Marvian, A. Melville, B. M. Niedzielski, Y. Sung, R. Winik, J. Yoder, D. Rosenberg, K. Obenland, S. Lloyd, T. P. Orlando, I. Marvian, S. Gustavsson, W. D. Oliver. Demonstration of density matrix exponentiation using a superconducting quantum processor. Phys. Rev. X, 2022, 12(1): 011005
CrossRef
ADS
Google scholar
|
[44] |
S. Pal, N. Nishad, T. S. Mahesh, G. J. Sreejith. Temporal order in periodically driven spins in star-shaped clusters. Phys. Rev. Lett., 2018, 120(18): 180602
CrossRef
ADS
Google scholar
|
[45] |
K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, R. M. Serra, E. Lutz. Experimental validation of fully quantum fluctuation theorems using dynamic Bayesian networks. Phys. Rev. Lett., 2021, 127(18): 180603
CrossRef
ADS
Google scholar
|
[46] |
R. J. de Assis, T. M. de Mendonça, C. J. Villas-Boas, A. M. de Souza, R. S. Sarthour, I. S. Oliveira, N. G. de Almeida. Efficiency of a quantum Otto heat engine operating under a reservoir at effective negative temperatures. Phys. Rev. Lett., 2019, 122(24): 240602
CrossRef
ADS
Google scholar
|
[47] |
Z. Zhang, X. Long, X. Zhao, Z. Lin, K. Tang, H. Liu, X. Yang, X. Nie, J. Wu, J. Li, T. Xin, K. Li, D. Lu. Identifying Abelian and non-Abelian topological orders in the string-net model using a quantum scattering circuit. Phys. Rev. A, 2022, 105(3): L030402
CrossRef
ADS
Google scholar
|
[48] |
C. Miquel, J. P. Paz, M. Saraceno, E. Knill, R. Laflamme, C. Negrevergne. Interpretation of tomography and spectroscopy as dual forms of quantum computation. Nature, 2002, 418(6893): 59
CrossRef
ADS
Google scholar
|
[49] |
Z. Li, M. H. Yung, H. Chen, D. Lu, J. D. Whitfield, X. Peng, A. Aspuru-Guzik, J. Du. Solving quantum ground-state problems with nuclear magnetic resonance. Sci. Rep., 2011, 1: 88
CrossRef
ADS
Google scholar
|
[50] |
T. B. Batalhão, A. M. Souza, R. S. Sarthour, I. S. Oliveira, M. Paternostro, E. Lutz, R. M. Serra. Irreversibility and the arrow of time in a quenched quantum system. Phys. Rev. Lett., 2015, 115(19): 190601
CrossRef
ADS
Google scholar
|
[51] |
T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R. M. Serra. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
CrossRef
ADS
Google scholar
|
[52] |
V. Giovannetti, S. Lloyd, L. Maccone. Quantum random access memory. Phys. Rev. Lett., 2008, 100(16): 160501
CrossRef
ADS
Google scholar
|
[53] |
W. Ning, S. Lei, J. Yang, Y. Cao, P. Jiang, Q. Yang, J. Zhang, X. Wang, F. Chen, Z. Geng, J. Xiong, H. Zhou, K. Guo, Y. Zeng, H. Chi, L. Wang, Y. Xue, Z. Wang. Open resource of clinical data from patients with pneumonia for the prediction of COVID-19 outcomes via deep learning. Nat. Biomed. Eng., 2020, 4: 1197
CrossRef
ADS
Google scholar
|
[54] |
M.A. TurkA. P. Pentland, in: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 1991, pp 586–587
|
[55] |
J. Li, D. Lu, Z. Luo, R. Laflamme, X. Peng, J. Du. Approximation of reachable sets for coherently controlled open quantum systems: Application to quantum state engineering. Phys. Rev. A, 2016, 94(1): 012312
CrossRef
ADS
Google scholar
|
[56] |
X. Nie, X. Zhu, K. Huang, K. Tang, X. Long, Z. Lin, Y. Tian, C. Qiu, C. Xi, X. Yang, J. Li, Y. Dong, T. Xin, D. Lu. Experimental realization of a quantum refrigerator driven by indefinite causal orders. Phys. Rev. Lett., 2022, 129(10): 100603
CrossRef
ADS
Google scholar
|
[57] |
T. Xin, Y. Li, Y. A. Fan, X. Zhu, Y. Zhang, X. Nie, J. Li, Q. Liu, D. Lu. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator. Phys. Rev. Lett., 2020, 125(9): 090502
CrossRef
ADS
Google scholar
|
[58] |
K. Micadei, J. P. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, E. Lutz. Reversing the direction of heat flow using quantum correlations. Nat. Commun., 2019, 10(1): 2456
CrossRef
ADS
Google scholar
|
[59] |
S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger, R. Kosloff, I. Kuprov, B. Luy, S. Schirmer, T. Schulte-Herbrüggen, D. Sugny, F. K. Wilhelm. Training Schrödinger’s cat: Quantum optimal control. Eur. Phys. J. D, 2015, 69(12): 279
CrossRef
ADS
Google scholar
|
[60] |
P. de Fouquieres, S. G. Schirmer, S. J. Glaser, I. Kuprov. Second order gradient ascent pulse engineering. J. Magn. Reson., 2011, 212(2): 412
CrossRef
ADS
Google scholar
|
[61] |
G. E. Hinton, R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504
CrossRef
ADS
Google scholar
|
[62] |
H. Abdi, L. J. Williams. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat., 2010, 2(4): 433
CrossRef
ADS
Google scholar
|
[63] |
J. Li, X. Yang, X. Peng, C. P. Sun. Hybrid quantum−classical approach to quantum optimal control. Phys. Rev. Lett., 2017, 118(15): 150503
CrossRef
ADS
Google scholar
|
[64] |
D. Lu, K. Li, J. Li, H. Katiyar, A. J. Park, G. Feng, T. Xin, H. Li, G. Long, A. Brodutch, J. Baugh, B. Zeng, R. Laflamme. Enhancing quantum control by bootstrapping a quantum processor of 12 qubits. npj Quantum Inf., 2017, 3: 45
CrossRef
ADS
Google scholar
|
[65] |
S. T. Flammia, Y. K. Liu. Direct fidelity estimation from few Pauli measurements. Phys. Rev. Lett., 2011, 106(23): 230501
CrossRef
ADS
Google scholar
|
[66] |
M. P. da Silva, O. Landon-Cardinal, D. Poulin. Practical characterization of quantum devices without tomography. Phys. Rev. Lett., 2011, 107(21): 210404
CrossRef
ADS
Google scholar
|
[67] |
S. Lloyd. Universal quantum simulators. Science, 1996, 273(5278): 1073
CrossRef
ADS
Google scholar
|
[68] |
N. A. Gershenfeld, I. L. Chuang. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
CrossRef
ADS
Google scholar
|
[69] |
D. Lu, H. Li, D. A. Trottier, J. Li, A. Brodutch, A. P. Krismanich, A. Ghavami, G. I. Dmitrienko, G. Long, J. Baugh, R. Laflamme. Experimental estimation of average fidelity of a clifford gate on a 7-qubit quantum processor. Phys. Rev. Lett., 2015, 114(14): 140505
CrossRef
ADS
Google scholar
|
[70] |
G. Feng, F. H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh, R. Laflamme. Gradient-based closed-loop quantum optimal control in a solid-state two-qubit system. Phys. Rev. A, 2018, 98(5): 052341
CrossRef
ADS
Google scholar
|
[71] |
T. Xin, X. Nie, X. Kong, J. Wen, D. Lu, J. Li. Quantum pure state tomography via variational hybrid quantum-classical method. Phys. Rev. Appl., 2020, 13(2): 024013
CrossRef
ADS
Google scholar
|
Supplementary files
fop-24391-of-ludawei_suppl_1 (5001 KB)
/
〈 |
|
〉 |