Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current

Xueping Li, Xiaojie Tang, Zhuojun Wang, Peize Yuan, Lin Li, Chenhai Shen, Congxin Xia

PDF(7780 KB)
PDF(7780 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (5) : 53202. DOI: 10.1007/s11467-023-1390-3
RESEARCH ARTICLE

Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current

Author information +
History +

Abstract

Dielectric engineering plays a crucial role in the process of device miniaturization. Herein we investigate the electrical properties of bilayer GaSe metal-oxide-semiconductor field-effect transistors (MOSFETs), considering hetero-gate-dielectric construction, dielectric materials and GaSe stacking pattern. The results show that device performance strongly depends on the dielectric constants and locations of insulators. When high-k dielectric is placed close to the drain, it behaves with a larger on-state current (Ion) of 5052 μA/μm when the channel is 5 nm. Additionally, when the channel is 5 nm and insulator is HfO2, the largest Ion is 5134 μA/μm for devices with AC stacking GaSe channel. In particular, when the gate length is 2 nm, it still meets the HP requirements of ITRS 2028 for the device with AA stacking when high-k dielectric is used. Hence, the work provides guidance to regulate the performance of the two-dimensional nanodevices by dielectric engineering.

Graphical abstract

Keywords

GaSe stacking pattern / metal-oxide-semiconductor field-effect transistors (MOSFETs) / ultrahigh on-state current / dielectric engineering

Cite this article

Download citation ▾
Xueping Li, Xiaojie Tang, Zhuojun Wang, Peize Yuan, Lin Li, Chenhai Shen, Congxin Xia. Sub-5 nm bilayer GaSe MOSFETs towards ultrahigh on-state current. Front. Phys., 2024, 19(5): 53202 https://doi.org/10.1007/s11467-023-1390-3

References

[1]
J. Jiang, Y. Wen, H. Wang, L. Yin, R. Cheng, C. Liu, L. Feng, J. He. Recent advances in 2D materials for photodetectors. Adv. Electron. Mater., 2021, 7(7): 2001125
CrossRef ADS Google scholar
[2]
M. Long, P. Wang, H. Fang, W. Hu. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
CrossRef ADS Google scholar
[3]
L. Zhang, Y. Yang, J. Chen, L. Zhang. Photogalvanic effect induced charge and spin photocurrent in group-V monolayer systems. Front. Phys., 2023, 18(6): 62301
CrossRef ADS Google scholar
[4]
X. Li, P. Yuan, M. He, L. Li, J. Du, W. Xiong, C. Xia, L. Kou. Optoelectronic properties and applications of two-dimensional layered semiconductor van der Waals heterostructures: Perspective from theory. J. Phys.: Condens. Matter, 2023, 35(4): 043001
CrossRef ADS Google scholar
[5]
M. Bikerouin, O. Chdil, M. Balli. Solar cells based on 2D Janus group-III chalcogenide van der Waals heterostructures. Nanoscale, 2023, 15(15): 7126
CrossRef ADS Google scholar
[6]
H. Li, L. Lin, L. Yao, F. Wu, D. Wei, G. Liu, Z. Huang, S. Chen, J. Li, G. Chen. High‐efficiency Sb2(S, Se)3 solar cells with new hole transport layer-free back architecture via 2D titanium-carbide Mxene. Adv. Funct. Mater., 2022, 32(10): 2110335
CrossRef ADS Google scholar
[7]
V. K. Sangwan, H. S. Lee, H. Bergeron, I. Balla, M. E. Beck, K. S. Chen, M. C. Hersam. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature, 2018, 554(7693): 500
CrossRef ADS Google scholar
[8]
L. Yin, R. Cheng, Z. Wang, F. Wang, M. G. Sendeku, Y. Wen, X. Zhan, J. He. Two-dimensional unipolar memristors with logic and memory functions. Nano Lett., 2020, 20(6): 4144
CrossRef ADS Google scholar
[9]
W. Niu, G. Ding, Z. Jia, X. Ma, J. Zhao, K. Zhou, S. Han, C. Kuo, Y. Zhou. Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
CrossRef ADS Google scholar
[10]
L. Mennel, J. Symonowicz, S. Wachter, D. K. Polyushkin, A. J. Molina-Mendoza, T. Mueller. Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020, 579(7797): 62
CrossRef ADS Google scholar
[11]
W. Huh, D. Lee, C. H. Lee. Memristors based on 2D materials as an artificial synapse for neuromorphic electronics. Adv. Mater., 2020, 32(51): 2002092
CrossRef ADS Google scholar
[12]
D. Xiang, T. Liu, X. Zhang, P. Zhou, W. Chen. Dielectric engineered two-dimensional neuromorphic transistors. Nano Lett., 2021, 21(8): 3557
CrossRef ADS Google scholar
[13]
J. H. Ju, S. Seo, S. Baek, D. Lee, S. Lee, T. Lee, B. Kim, J. J. Lee, J. Koo, H. Choo, S. Lee, J. H. Park. Two-dimensional MXene synapse for brain-inspired neuromorphic computing. Small, 2021, 17(34): 2102595
CrossRef ADS Google scholar
[14]
R. K. A. Bennett, Y. Yoon. Using anisotropic insulators to engineer the electrostatics of conventional and tunnel field-effect transistors. IEEE Trans. Electron Dev., 2021, 68(2): 865
CrossRef ADS Google scholar
[15]
C.TanM. YuJ.TangX.GaoY.Yin Y.ZhangJ. WangX.GaoC.ZhangX.Zhou L.ZhengH. LiuK.JiangF.DingH.Peng, 2D fin field-effect transistors integrated with epitaxial high-k gate oxide, Nature 616(7955), 66 (2023)
[16]
W. Zhou, S. Zhang, S. Guo, H. Qu, B. Cai, X. Chen, H. Zeng. High-performance monolayer Na3Sb shrinking transistors: a DFT-NEGF study. Nanoscale, 2020, 12(36): 18931
CrossRef ADS Google scholar
[17]
R. K. A. Bennett, Y. Yoon. Exploiting fringing fields created by high-κ gate insulators to enhance the performance of ultrascaled 2D-material-based transistors. IEEE Trans. Electron Dev., 2021, 68(9): 4618
CrossRef ADS Google scholar
[18]
W. Y. Choi, W. Lee. Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans. Electron Dev., 2010, 57(9): 2317
CrossRef ADS Google scholar
[19]
J. Madan, R. Chaujar. Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: A solution for suppressed ambipolarity and enhanced ON state behavior. Appl. Phys. A, 2016, 122(11): 973
CrossRef ADS Google scholar
[20]
X. P. Li, P. Z. Yuan, L. Li, M. J. He, J. B. Li, C. X. Xia. Sub-5-nm monolayer GaSe MOSFET with ultralow subthreshold swing and high on-state current: Dielectric layer effects. Phys. Rev. Appl., 2022, 18(4): 044012
CrossRef ADS Google scholar
[21]
A. Kuc, T. Cusati, E. Dib, A. F. Oliveira, A. Fortunelli, G. Iannaccone, T. Heine, G. Fiori. High-performance 2D p-type transistors based on GaSe layers: An ab initio study. Adv. Electron. Mater., 2017, 3(2): 1600399
CrossRef ADS Google scholar
[22]
Y. Cui, L. Peng, L. Sun, Q. Qian, Y. Huang. Two-dimensional few-layer group-III metal monochalcogenides as effective photocatalysts for overall water splitting in the visible range. J. Mater. Chem. A, 2018, 6(45): 22768
CrossRef ADS Google scholar
[23]
D. J. Late, B. Liu, J. Luo, A. Yan, H. S. Matte, M. Grayson, C. N. Rao, V. P. Dravid. GaS and GaSe ultrathin layer transistors. Adv. Mater., 2012, 24(26): 3549
CrossRef ADS Google scholar
[24]
B. Chitara, A. Ya’akobovitz. Elastic properties and breaking strengths of GaS, GaSe and GaTe nanosheets. Nanoscale, 2018, 10(27): 13022
CrossRef ADS Google scholar
[25]
M.W. ChenH. KimD.OvchinnikovA.KucT.Heine O.RenaultA. Kis, Large-grain MBE-grown GaSe on GaAs with a Mexican hat-like valence band dispersion, npj 2D Mater. Appl. 2(1), 2 (2018)
[26]
C. Si, Z. Lin, J. Zhou, Z. Sun. Controllable Schottky barrier in GaSe/graphene heterostructure: The role of interface dipole. 2D Mater., 2016, 4(1): 015027
CrossRef ADS Google scholar
[27]
D. J. Late, B. Liu, H. S. S. R. Matte, C. N. R. Rao, V. P. Dravid. Rapid characterization of ultrathin layers of chalcogenides on SiO2/Si substrates. Adv. Funct. Mater., 2012, 22(9): 1894
CrossRef ADS Google scholar
[28]
P. A. Hu, Z. Wen, L. Wang, P. Tan, K. Xiao. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano, 2012, 6(7): 5988
CrossRef ADS Google scholar
[29]
J. Palepu, A. Tiwari, P. Sahatiya, S. Kundu, S. Kanungo. Effects of artificial stacking configurations and biaxial strain on the structural, electronic and transport properties of bilayer GaSe − A first principle study. Mater. Sci. Semicond. Process., 2022, 137: 106236
CrossRef ADS Google scholar
[30]
L. Li, P. Z. Yuan, T. Liu, Z. A. Ma, C. X. Xia, X. P. Li. Self-powered broadband photodetector based on a monolayer InSe p−i−n homojunction. Phys. Rev. Appl., 2023, 19(1): 014039
CrossRef ADS Google scholar
[31]
X. Li, P. Yuan, L. Li, T. Liu, C. Shen, Y. Jiang, X. Song, C. Xia. Two dimensional GeO2/MoSi2N4 van der Waals heterostructures with robust type-II band alignment. Front. Phys., 2023, 18(1): 13305
CrossRef ADS Google scholar
[32]
X. Li, Z. Wang, L. Li, P. Yuan, X. Tang, C. Shen, Y. Jiang, X. Song, C. Xia. Orientation-dependent transport and photo detection in WSe2/MoSe2 planar heterojunction transistors. IEEE Trans. Electron Dev., 2023, 20(6): 064050
CrossRef ADS Google scholar
[33]
X. Li, T. Li, P. Yuan, L. Li, C. Shen, Y. Jiang, X. Song, C. Xia. Ultrahigh current and ultralow power dissipation of Janus monolayer IIIA-VIA Ga2XY MOSFETs. Appl. Surf. Sci., 2023, 630: 157436
CrossRef ADS Google scholar
[34]
J. P. Perdew, K. Burke, M. Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[35]
Z. Q. Fan, X. W. Jiang, J. W. Luo, L. Y. Jiao, R. Huang, S. S. Li, L. W. Wang. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys. Rev. B, 2017, 96(16): 165402
CrossRef ADS Google scholar
[36]
W. Zhou, H. Qu, S. Guo, B. Cai, H. Chen, Z. Wu, H. Zeng, S. Zhang. Dependence of tunneling mechanism on two-dimensional material parameters: A high-throughput study. Phys. Rev. Appl., 2022, 17(6): 064053
CrossRef ADS Google scholar
[37]
W. K. Zhao, D. Q. Zou, Z. P. Sun, Y. Q. Xu, G. M. Ji, X. T. Li, C. L. Yang. High-performance monolayer SiMe-graphene n-type field-effect transistors with low supply voltage and high on-state current in sub-5 nm gate length. Adv. Electron. Mater., 2022, 8(7): 2101359
CrossRef ADS Google scholar
[38]
Y. Yin, C. Shao, H. Guo, J. Robertson, Z. Zhang, Y. Guo. Negative differential resistance effect in “cold” metal heterostructure diodes. IEEE Electron Device Lett., 2022, 43(3): 498
CrossRef ADS Google scholar
[39]
L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, Y. Liu. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun., 2020, 11(1): 1866
CrossRef ADS Google scholar
[40]
R. Duflou, G. Pourtois, M. Houssa, A. Afzalian. Fundamentals of low-resistive 2D-semiconductor metal contacts: An ab-initio NEGF study. npj 2D Mater. Appl., 2023, 7(1): 38
CrossRef ADS Google scholar
[41]
H. Mamori, A. El Kenz, A. Benyoussef, A. Taleb, A. Ennaoui, K. El Maalam, M. Hamedoun, O. Mounkachi. Dynamic stability in phosphorene bilayer with different stacking orders: A first principle study. Mater. Sci. Semicond. Process., 2022, 140: 106341
CrossRef ADS Google scholar
[42]
P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang, C. Ma, Y. Lv, X. Zou, Y. Liu, F. Schwierz, W. Qin, L. Liao, J. He, X. Liu. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
CrossRef ADS Google scholar
[43]
Q. Li, S. Fang, S. Liu, L. Xu, L. Xu, C. Yang, J. Yang, B. Shi, J. Ma, J. Yang, R. Quhe, J. Lu. Performance limit of ultrathin GaAs transistors. ACS Appl. Mater. Interfaces, 2022, 14(20): 23597
CrossRef ADS Google scholar
[44]
H. Li, Q. Wang, F. Liu, J. Lu. Lifting on-state currents for GeS-based tunneling field-effect transistors with electrode optimization. Appl. Surf. Sci., 2022, 602: 154297
CrossRef ADS Google scholar
[45]
W. Zhou, S. Guo, H. Zeng, S. Zhang. High-performance monolayer BeN2 transistors with ultrahigh on-state current: A DFT coupled with NEGF study. IEEE Trans. Electron Dev., 2022, 69(8): 4501
CrossRef ADS Google scholar
[46]
J. Lyu, S. Song, J. Gong. Bi2O2Se/Xene for steep-slope transistors. ACS Appl. Electron. Mater., 2023, 5(8): 4248
CrossRef ADS Google scholar
[47]
Y. Ke, W. Li, G. Yin, L. Zhang, R. Quhe. Quantum transport simulations of a proposed logic-in-memory device based on a bipolar magnetic semiconductor. Phys. Rev. Appl., 2023, 20(1): 014050
CrossRef ADS Google scholar
[48]
P. Sang, Q. Wang, W. Wei, L. Tai, X. Zhan, Y. Li, J. Chen. Two-dimensional silicon atomic layer field-effect transistors: Electronic property, metal-semiconductor contact, and device performance. IEEE Trans. Electron Dev., 2022, 69(4): 2173
CrossRef ADS Google scholar
[49]
H. V. Phuc, N. N. Hieu, B. D. Hoi, C. V. Nguyen. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer−GaSe van der Waals heterostructure. Phys. Chem. Chem. Phys., 2018, 20(26): 17899
CrossRef ADS Google scholar
[50]
J. Grzonka, M. S. Claro, A. Molina‐Sánchez, S. Sadewasser, P. J. Ferreira. Novel polymorph of GaSe. Adv. Funct. Mater., 2021, 31(48): 2104965
CrossRef ADS Google scholar
[51]
Z. Ben Aziza, V. Zólyomi, H. Henck, D. Pierucci, M. G. Silly, J. Avila, S. J. Magorrian, J. Chaste, C. Chen, M. Yoon, K. Xiao, F. Sirotti, M. C. Asensio, E. Lhuillier, M. Eddrief, V. I. Fal’ko, A. Ouerghi. Valence band inversion and spin−orbit effects in the electronic structure of monolayer GaSe. Phys. Rev. B, 2018, 98(11): 115405
CrossRef ADS Google scholar
[52]
TheInternational Technology Roadmap for Semiconductors (ITRS), www.semiconductors.org/resources/2013
[53]
H. Xie, X. Cai, K. Cui, X. Yi, J. Lu, Z. Fan. High-performance monolayer or bilayer SiC short channel transistors with metallic 1T-phase MoS2 contact. Phys. Lett. A, 2022, 436: 128070
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1390-3 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1390-3.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grants Nos. 12374070 and 12074103), the Foundation for University Key Young Teacher of Henan (Grant No. 2023GGJS035), Henan Province Postdoctoral Project Launch Funding (Grant No. 5201029430112), and the Science and Technology Program of Henan (Grant No. 232102230080). The calculations are also supported by the High Performance Computing Center of Henan Normal University.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7780 KB)

Accesses

Citations

Detail

Sections
Recommended

/