A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer

Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen

PDF(5326 KB)
PDF(5326 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43209. DOI: 10.1007/s11467-023-1388-x
RESEARCH ARTICLE

A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer

Author information +
History +

Abstract

Non-Hermitian systems with parity−time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as high-performance WPT, wireless sensing and communications.

Graphical abstract

Keywords

non-Hermitian physics / parity−time asymmetry / bound state in the continuum / wireless power transfer

Cite this article

Download citation ▾
Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen. A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer. Front. Phys., 2024, 19(4): 43209 https://doi.org/10.1007/s11467-023-1388-x

References

[1]
A. Krasnok , D. G. Baranov , A. Generalov , S. Li , A. Alu . Coherently enhanced wireless power transfer. Phys. Rev. Lett., 2018, 120(14): 143901
CrossRef ADS arXiv Google scholar
[2]
M. Song , P. Jayathurathnage , E. Zanganeh , M. Krasikova , P. Smirnov , P. Belov , P. Kapitanova , C. Simovski , S. Tretyakov , A. Krasnok . Wireless power transfer based on novel physical concepts. Nat. Electron., 2021, 4(10): 707
CrossRef ADS Google scholar
[3]
A. Kurs , A. Karalis , R. Moffatt , J. D. Joannopoulos , P. Fisher , M. Soljačić . Wireless power transfer via strongly coupled magnetic resonances. Science, 2007, 317(5834): 83
CrossRef ADS Google scholar
[4]
Y. Xie , Z. Zhang , Y. Lin , T. Feng , Y. Xu . Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl., 2021, 15(4): 044024
CrossRef ADS Google scholar
[5]
S. Assawaworrarit , X. Yu , S. Fan . Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 2017, 546(7658): 387
CrossRef ADS Google scholar
[6]
J.LiB.Zhang, A wireless power transfer system based on quasi‐parity–time symmetry with gain–loss ratio modulation, Int. J. Circuit Theory Appl. 51(3), 1039 (2023)
[7]
Z. Miao , D. Liu , C. Gong . Efficiency enhancement for an inductive wireless power transfer system by optimizing the impedance matching networks. IEEE Trans. Biomed. Circuits Syst., 2017, 11(5): 1160
CrossRef ADS Google scholar
[8]
J. Song , F. Yang , Z. Guo , X. Wu , K. Zhu , J. Jiang , Y. Sun , Y. Li , H. Jiang , H. Chen . Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl., 2021, 15(1): 014009
CrossRef ADS arXiv Google scholar
[9]
Z.GuoJ.JiangX.WuH.ZhangS.HuY.WangY.LiY.YangH.Chen, Rotation manipulation of high-order PT-symmetry for robust wireless power transfer, Fundamental Res., doi: 10.1016/j.fmre.2023.11.010 (2023)
[10]
Z. Guo , F. Yang , H. Zhang , X. Wu , Q. Wu , K. Zhu , J. Jiang , H. Jiang , Y. Yang , Y. Li , H. Chen . Level pinning of anti-PT symmetric circuits for efficient wireless power transfer. Natl. Sci. Rev., 2023, 11(1): nwad172
CrossRef ADS Google scholar
[11]
B. L. Cannon , J. F. Hoburg , D. D. Stancil , S. C. Goldstein . Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 2009, 24(7): 1819
CrossRef ADS Google scholar
[12]
L. Zhang , Y. Yang , Z. Jiang , Q. Chen , Q. Yan , Z. Wu , B. Zhang , J. Huangfu , H. Chen . Demonstration of topological wireless power transfer. Sci. Bull. (Beijing), 2021, 66(10): 974
CrossRef ADS arXiv Google scholar
[13]
M. Sakhdari , M. Hajizadegan , P. Y. Chen . Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Phys. Rev. Res., 2020, 2(1): 013152
CrossRef ADS Google scholar
[14]
J. Zhou , B. Zhang , W. Xiao , D. Qiu , Y. Chen . Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: Application to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron., 2019, 66(5): 4097
CrossRef ADS Google scholar
[15]
H. Kim , S. Yoo , H. Joo , J. Lee , D. An , S. Nam , H. Han , D. H. Kim , S. Kim . Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity–time symmetry. Sci. Adv., 2022, 8(24): eabo4610
CrossRef ADS Google scholar
[16]
Z. Guo , Y. Long , H. Jiang , J. Ren , H. Chen . Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics, 2021, 3(3): 036001
CrossRef ADS Google scholar
[17]
A. P. Sample , D. A. Meyer , J. R. Smith . Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron., 2011, 58(2): 544
CrossRef ADS Google scholar
[18]
C. Zeng , Z. Guo , K. Zhu , C. Fan , G. Li , J. Jiang , Y. Li , H. Jiang , Y. Yang , Y. Sun , H. Chen . Efficient and stable wireless power transfer based on the non-Hermitian physics. Chin. Phys. B, 2022, 31(1): 010307
CrossRef ADS Google scholar
[19]
N. Tesla . Apparatus for transmitting electrical energy. U. S. Patent, 1914, 1: 119,732
[20]
T. Huang , B. Wang , W. Zhang , C. Zhao . Ultracompact energy transfer in anapole-based metachains. Nano Lett., 2021, 21(14): 6102
CrossRef ADS arXiv Google scholar
[21]
B. X. Wang , C. Y. Zhao . Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry–André–Harper model. Phys. Rev. B, 2023, 107(12): 125409
CrossRef ADS arXiv Google scholar
[22]
Y. Wu , L. Kang , D. H. Werner . Symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
CrossRef ADS Google scholar
[23]
X. Hao , K. Yin , J. Zou , R. Wang , Y. Huang , X. Ma , T. Dong . Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
CrossRef ADS arXiv Google scholar
[24]
A. Li , H. Wei , M. Cotrufo , W. Chen , S. Mann , X. Ni , B. Xu , J. Chen , J. Wang , S. Fan , C. W. Qiu , A. Alù , L. Chen . Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol., 2023, 18(7): 706
CrossRef ADS Google scholar
[25]
C. Liang , Y. Tang , A. N. Xu , Y. C. Liu . Observation of exceptional points in thermal atomic ensembles. Phys. Rev. Lett., 2023, 130(26): 263601
CrossRef ADS arXiv Google scholar
[26]
Y. Li , Y. Ao , X. Hu , C. Lu , C. T. Chan , Q. Gong . Unsupervised learning of non‐Hermitian photonic bulk topology. Laser Photonics Rev., 2023, 17(12): 2300481
CrossRef ADS Google scholar
[27]
S. Ke , W. Wen , D. Zhao , Y. Wang . Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
CrossRef ADS Google scholar
[28]
S. M. Zhang , L. Jin . Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
CrossRef ADS Google scholar
[29]
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , D. N. Christodoulides . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
CrossRef ADS Google scholar
[30]
C.M. BenderS.BoettcherP.N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
[31]
C. M. Bender , S. Boettcher . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
CrossRef ADS Google scholar
[32]
J. Schindler , A. Li , M. C. Zheng , F. M. Ellis , T. Kottos . Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 2011, 84(4): 040101
CrossRef ADS arXiv Google scholar
[33]
S.Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
[34]
Y.D. ChongL.GeA.D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
[35]
Z. Gao , S. T. M. Fryslie , B. J. Thompson , P. S. Carney , K. D. Choquette . Parity–time symmetry in coherently coupled vertical cavity laser arrays. Optica, 2017, 4(3): 323
CrossRef ADS Google scholar
[36]
J. M. Lee , S. Factor , Z. Lin , I. Vitebskiy , F. M. Ellis , T. Kottos . Reconfigurable directional lasing modes in cavities with generalized PT symmetry. Phys. Rev. Lett., 2014, 112(25): 253902
CrossRef ADS Google scholar
[37]
Y. Sun , W. Tan , H. Q. Li , J. Li , H. Chen . Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 2014, 112(14): 143903
CrossRef ADS Google scholar
[38]
C. Wang , W. R. Sweeney , A. D. Stone , L. Yang . Coherent perfect absorption at an exceptional point. Science, 2021, 373(6560): 1261
CrossRef ADS arXiv Google scholar
[39]
M. Hajizadegan , M. Sakhdari , S. Liao , P. Y. Chen . High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antenn. Propag., 2019, 67(5): 3445
CrossRef ADS Google scholar
[40]
M. Sakhdari , M. Hajizadegan , Q. Zhong , D. N. Christodoulides , R. El-Ganainy , P. Y. Chen . Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 2019, 123(19): 193901
CrossRef ADS Google scholar
[41]
Z. Xiao , H. Li , T. Kottos , A. Alu . Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 2019, 123(21): 213901
CrossRef ADS Google scholar
[42]
Z. Guo , T. Zhang , J. Song , H. Jiang , H. Chen . Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 2021, 9(4): 574
CrossRef ADS Google scholar
[43]
Y. Qu , B. Zhang , W. Gu , J. Li , X. Shu . Distance extension of S-PS wireless power transfer system based on parity–time symmetry. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70(8): 2954
CrossRef ADS Google scholar
[44]
J. Kim , H.-C. Son , K.-H. Kim , Y.-J. Park . Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett., 2011, 10: 389
CrossRef ADS Google scholar
[45]
C. Saha , I. Anya , C. Alexandru , R. Jinks . Wireless power transfer using relay resonators. Appl. Phys. Lett., 2018, 112(26): 263902
CrossRef ADS Google scholar
[46]
H.ChenD.QiuC.RongB.Zhang, A double-transmitting coil wireless power transfer system based on parity time symmetry principle, IEEE Trans. Power Electron. 38(11), 13396 (2023)
[47]
C. W. Hsu , B. Zhen , A. D. Stone , J. D. Joannopoulos , M. Soljačić . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
CrossRef ADS Google scholar
[48]
J. Wang , L. Shi , J. Zi . Spin Hall effect of light via momentum-space topological vortices around bound sates in the continuum. Phys. Rev. Lett., 2022, 129(23): 236101
CrossRef ADS Google scholar
[49]
H. Zhang , S. Liu , Z. Guo , S. Hu , Y. Chen , Y. Li , Y. Li , H. Chen . Topological bound state in the continuum induced unidirectional acoustic perfect absorption. Sci. China Phys. Mech. Astron., 2023, 66(8): 284311
CrossRef ADS Google scholar
[50]
X. X. Wang , Z. Guo , J. Song , H. Jiang , H. Chen , X. Hu . Unique Huygens–Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal. Nat. Commun., 2023, 14(1): 3040
CrossRef ADS Google scholar
[51]
Q. Wang , C. Zhu , X. Zheng , H. Xue , B. Zhang , Y. D. Chong . Continuum of bound states in a non-Hermitian model. Phys. Rev. Lett., 2023, 130(10): 103602
CrossRef ADS arXiv Google scholar
[52]
S. Fan , W. Suh , J. D. Joannopoulos . Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003, 20(3): 569
CrossRef ADS Google scholar
[53]
Z. Guo , H. Jiang , Y. Li , H. Chen , G. S. Agarwal . Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 2018, 26(2): 627
CrossRef ADS arXiv Google scholar
[54]
H. Zhang , K. Zhu , Z. Guo , Y. Chen , Y. Sun , J. Jiang , Y. Li , Z. Yu , H. Chen . Robustness of wireless power transfer systems with parity–time symmetry and asymmetry. Energies, 2023, 16(12): 4605
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data and code availability

All the data and codes that support the findings of this study are available from the corresponding authors upon reasonable request.

Author contributions

Z. G., Y. C., and H. C. conceived the idea and supervised the project. H. Z. carried out the analytical calculations with the help of Y. Y., H. Z. prepared the sample and conducted experimental measurements with the help of Y. L., H. Z., Z. G., Y.C., and H. C. wrote the manuscript. All authors contributed to discussions of the results and the manuscript.

Electronic supplementary materials

Supplementary materials to this article can be found online at https://doi.org/10.1007/s11467-023-1388-x and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1388-x.

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2021YFA1400602 and 2023YFA1407600), the National Natural Science Foundation of China (Nos. 12004284 and 12374294), the Fundamental Research Funds for the Central Universities (No. 22120210579), and the Chenguang Program of Shanghai (No. 21CGA22).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5326 KB)

Accesses

Citations

Detail

Sections
Recommended

/