A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer
Haiyan Zhang, Zhiwei Guo, Yunhui Li, Yaping Yang, Yuguang Chen, Hong Chen
A universal non-Hermitian platform for bound state in the continuum enhanced wireless power transfer
Non-Hermitian systems with parity−time (PT)-symmetry have been extensively studied and rapidly developed in resonance wireless power transfer (WPT). The WPT system that satisfies PT-symmetry always has real eigenvalues, which promote efficient energy transfer. However, meeting the condition of PT-symmetry is one of the most puzzling issues. Stable power transfer under different transmission conditions is also a great challenge. Bound state in the continuum (BIC) supporting extreme quality-factor mode provides an opportunity for efficient WPT. Here, we propose theoretically and demonstrate experimentally that BIC widely exists in resonance-coupled systems without PT-symmetry, and it can even realize more stable and efficient power transfer than PT-symmetric systems. Importantly, BIC for efficient WPT is universal and suitable in standard second-order and even high-order WPT systems. Our results not only extend non-Hermitian physics beyond PT-symmetry, but also bridge the gap between BIC and practical application engineering, such as high-performance WPT, wireless sensing and communications.
non-Hermitian physics / parity−time asymmetry / bound state in the continuum / wireless power transfer
[1] |
A. Krasnok , D. G. Baranov , A. Generalov , S. Li , A. Alu . Coherently enhanced wireless power transfer. Phys. Rev. Lett., 2018, 120(14): 143901
CrossRef
ADS
arXiv
Google scholar
|
[2] |
M. Song , P. Jayathurathnage , E. Zanganeh , M. Krasikova , P. Smirnov , P. Belov , P. Kapitanova , C. Simovski , S. Tretyakov , A. Krasnok . Wireless power transfer based on novel physical concepts. Nat. Electron., 2021, 4(10): 707
CrossRef
ADS
Google scholar
|
[3] |
A. Kurs , A. Karalis , R. Moffatt , J. D. Joannopoulos , P. Fisher , M. Soljačić . Wireless power transfer via strongly coupled magnetic resonances. Science, 2007, 317(5834): 83
CrossRef
ADS
Google scholar
|
[4] |
Y. Xie , Z. Zhang , Y. Lin , T. Feng , Y. Xu . Magnetic quasi-bound state in the continuum for wireless power transfer. Phys. Rev. Appl., 2021, 15(4): 044024
CrossRef
ADS
Google scholar
|
[5] |
S. Assawaworrarit , X. Yu , S. Fan . Robust wireless power transfer using a nonlinear parity–time-symmetric circuit. Nature, 2017, 546(7658): 387
CrossRef
ADS
Google scholar
|
[6] |
J.LiB.Zhang, A wireless power transfer system based on quasi‐parity–time symmetry with gain–loss ratio modulation, Int. J. Circuit Theory Appl. 51(3), 1039 (2023)
|
[7] |
Z. Miao , D. Liu , C. Gong . Efficiency enhancement for an inductive wireless power transfer system by optimizing the impedance matching networks. IEEE Trans. Biomed. Circuits Syst., 2017, 11(5): 1160
CrossRef
ADS
Google scholar
|
[8] |
J. Song , F. Yang , Z. Guo , X. Wu , K. Zhu , J. Jiang , Y. Sun , Y. Li , H. Jiang , H. Chen . Wireless power transfer via topological modes in dimer chains. Phys. Rev. Appl., 2021, 15(1): 014009
CrossRef
ADS
arXiv
Google scholar
|
[9] |
Z.GuoJ.JiangX.WuH.ZhangS.HuY.WangY.LiY.YangH.Chen, Rotation manipulation of high-order PT-symmetry for robust wireless power transfer, Fundamental Res., doi: 10.1016/j.fmre.2023.11.010 (2023)
|
[10] |
Z. Guo , F. Yang , H. Zhang , X. Wu , Q. Wu , K. Zhu , J. Jiang , H. Jiang , Y. Yang , Y. Li , H. Chen . Level pinning of anti-PT symmetric circuits for efficient wireless power transfer. Natl. Sci. Rev., 2023, 11(1): nwad172
CrossRef
ADS
Google scholar
|
[11] |
B. L. Cannon , J. F. Hoburg , D. D. Stancil , S. C. Goldstein . Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers. IEEE Trans. Power Electron., 2009, 24(7): 1819
CrossRef
ADS
Google scholar
|
[12] |
L. Zhang , Y. Yang , Z. Jiang , Q. Chen , Q. Yan , Z. Wu , B. Zhang , J. Huangfu , H. Chen . Demonstration of topological wireless power transfer. Sci. Bull. (Beijing), 2021, 66(10): 974
CrossRef
ADS
arXiv
Google scholar
|
[13] |
M. Sakhdari , M. Hajizadegan , P. Y. Chen . Robust extended-range wireless power transfer using a higher-order PT-symmetric platform. Phys. Rev. Res., 2020, 2(1): 013152
CrossRef
ADS
Google scholar
|
[14] |
J. Zhou , B. Zhang , W. Xiao , D. Qiu , Y. Chen . Nonlinear parity–time-symmetric model for constant efficiency wireless power transfer: Application to a drone-in-flight wireless charging platform. IEEE Trans. Ind. Electron., 2019, 66(5): 4097
CrossRef
ADS
Google scholar
|
[15] |
H. Kim , S. Yoo , H. Joo , J. Lee , D. An , S. Nam , H. Han , D. H. Kim , S. Kim . Wide-range robust wireless power transfer using heterogeneously coupled and flippable neutrals in parity–time symmetry. Sci. Adv., 2022, 8(24): eabo4610
CrossRef
ADS
Google scholar
|
[16] |
Z. Guo , Y. Long , H. Jiang , J. Ren , H. Chen . Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources. Adv. Photonics, 2021, 3(3): 036001
CrossRef
ADS
Google scholar
|
[17] |
A. P. Sample , D. A. Meyer , J. R. Smith . Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer. IEEE Trans. Ind. Electron., 2011, 58(2): 544
CrossRef
ADS
Google scholar
|
[18] |
C. Zeng , Z. Guo , K. Zhu , C. Fan , G. Li , J. Jiang , Y. Li , H. Jiang , Y. Yang , Y. Sun , H. Chen . Efficient and stable wireless power transfer based on the non-Hermitian physics. Chin. Phys. B, 2022, 31(1): 010307
CrossRef
ADS
Google scholar
|
[19] |
N. Tesla . Apparatus for transmitting electrical energy. U. S. Patent, 1914, 1: 119,732
|
[20] |
T. Huang , B. Wang , W. Zhang , C. Zhao . Ultracompact energy transfer in anapole-based metachains. Nano Lett., 2021, 21(14): 6102
CrossRef
ADS
arXiv
Google scholar
|
[21] |
B. X. Wang , C. Y. Zhao . Topological phonon polariton enhanced radiative heat transfer in bichromatic nanoparticle arrays mimicking Aubry–André–Harper model. Phys. Rev. B, 2023, 107(12): 125409
CrossRef
ADS
arXiv
Google scholar
|
[22] |
Y. Wu , L. Kang , D. H. Werner . Symmetry in non-Hermitian wireless power transfer systems. Phys. Rev. Lett., 2022, 129(20): 200201
CrossRef
ADS
Google scholar
|
[23] |
X. Hao , K. Yin , J. Zou , R. Wang , Y. Huang , X. Ma , T. Dong . Frequency-stable robust wireless power transfer based on high-order pseudo-Hermitian physics. Phys. Rev. Lett., 2023, 130(7): 077202
CrossRef
ADS
arXiv
Google scholar
|
[24] |
A. Li , H. Wei , M. Cotrufo , W. Chen , S. Mann , X. Ni , B. Xu , J. Chen , J. Wang , S. Fan , C. W. Qiu , A. Alù , L. Chen . Exceptional points and non-Hermitian photonics at the nanoscale. Nat. Nanotechnol., 2023, 18(7): 706
CrossRef
ADS
Google scholar
|
[25] |
C. Liang , Y. Tang , A. N. Xu , Y. C. Liu . Observation of exceptional points in thermal atomic ensembles. Phys. Rev. Lett., 2023, 130(26): 263601
CrossRef
ADS
arXiv
Google scholar
|
[26] |
Y. Li , Y. Ao , X. Hu , C. Lu , C. T. Chan , Q. Gong . Unsupervised learning of non‐Hermitian photonic bulk topology. Laser Photonics Rev., 2023, 17(12): 2300481
CrossRef
ADS
Google scholar
|
[27] |
S. Ke , W. Wen , D. Zhao , Y. Wang . Floquet engineering of the non-Hermitian skin effect in photonic waveguide arrays. Phys. Rev. A, 2023, 107(5): 053508
CrossRef
ADS
Google scholar
|
[28] |
S. M. Zhang , L. Jin . Localization in non-Hermitian asymmetric rhombic lattice. Phys. Rev. Res., 2020, 2(3): 033127
CrossRef
ADS
Google scholar
|
[29] |
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , D. N. Christodoulides . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14(1): 11
CrossRef
ADS
Google scholar
|
[30] |
C.M. BenderS.BoettcherP.N. Meisinger, PT-symmetric quantum mechanics, J. Math. Phys. 40(5), 2201 (1999)
|
[31] |
C. M. Bender , S. Boettcher . Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 1998, 80(24): 5243
CrossRef
ADS
Google scholar
|
[32] |
J. Schindler , A. Li , M. C. Zheng , F. M. Ellis , T. Kottos . Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 2011, 84(4): 040101
CrossRef
ADS
arXiv
Google scholar
|
[33] |
S.Longhi, PT-symmetric laser absorber, Phys. Rev. A 82(3), 031801 (2010)
|
[34] |
Y.D. ChongL.GeA.D. Stone, PT-symmetry breaking and laser-absorber modes in optical scattering systems, Phys. Rev. Lett. 106(9), 093902 (2011)
|
[35] |
Z. Gao , S. T. M. Fryslie , B. J. Thompson , P. S. Carney , K. D. Choquette . Parity–time symmetry in coherently coupled vertical cavity laser arrays. Optica, 2017, 4(3): 323
CrossRef
ADS
Google scholar
|
[36] |
J. M. Lee , S. Factor , Z. Lin , I. Vitebskiy , F. M. Ellis , T. Kottos . Reconfigurable directional lasing modes in cavities with generalized PT symmetry. Phys. Rev. Lett., 2014, 112(25): 253902
CrossRef
ADS
Google scholar
|
[37] |
Y. Sun , W. Tan , H. Q. Li , J. Li , H. Chen . Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys. Rev. Lett., 2014, 112(14): 143903
CrossRef
ADS
Google scholar
|
[38] |
C. Wang , W. R. Sweeney , A. D. Stone , L. Yang . Coherent perfect absorption at an exceptional point. Science, 2021, 373(6560): 1261
CrossRef
ADS
arXiv
Google scholar
|
[39] |
M. Hajizadegan , M. Sakhdari , S. Liao , P. Y. Chen . High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry. IEEE Trans. Antenn. Propag., 2019, 67(5): 3445
CrossRef
ADS
Google scholar
|
[40] |
M. Sakhdari , M. Hajizadegan , Q. Zhong , D. N. Christodoulides , R. El-Ganainy , P. Y. Chen . Experimental observation of PT symmetry breaking near divergent exceptional points. Phys. Rev. Lett., 2019, 123(19): 193901
CrossRef
ADS
Google scholar
|
[41] |
Z. Xiao , H. Li , T. Kottos , A. Alu . Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Phys. Rev. Lett., 2019, 123(21): 213901
CrossRef
ADS
Google scholar
|
[42] |
Z. Guo , T. Zhang , J. Song , H. Jiang , H. Chen . Sensitivity of topological edge states in a non-Hermitian dimer chain. Photon. Res., 2021, 9(4): 574
CrossRef
ADS
Google scholar
|
[43] |
Y. Qu , B. Zhang , W. Gu , J. Li , X. Shu . Distance extension of S-PS wireless power transfer system based on parity–time symmetry. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70(8): 2954
CrossRef
ADS
Google scholar
|
[44] |
J. Kim , H.-C. Son , K.-H. Kim , Y.-J. Park . Efficiency analysis of magnetic resonance wireless power transfer with intermediate resonant coil. IEEE Antennas Wirel. Propag. Lett., 2011, 10: 389
CrossRef
ADS
Google scholar
|
[45] |
C. Saha , I. Anya , C. Alexandru , R. Jinks . Wireless power transfer using relay resonators. Appl. Phys. Lett., 2018, 112(26): 263902
CrossRef
ADS
Google scholar
|
[46] |
H.ChenD.QiuC.RongB.Zhang, A double-transmitting coil wireless power transfer system based on parity time symmetry principle, IEEE Trans. Power Electron. 38(11), 13396 (2023)
|
[47] |
C. W. Hsu , B. Zhen , A. D. Stone , J. D. Joannopoulos , M. Soljačić . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
CrossRef
ADS
Google scholar
|
[48] |
J. Wang , L. Shi , J. Zi . Spin Hall effect of light via momentum-space topological vortices around bound sates in the continuum. Phys. Rev. Lett., 2022, 129(23): 236101
CrossRef
ADS
Google scholar
|
[49] |
H. Zhang , S. Liu , Z. Guo , S. Hu , Y. Chen , Y. Li , Y. Li , H. Chen . Topological bound state in the continuum induced unidirectional acoustic perfect absorption. Sci. China Phys. Mech. Astron., 2023, 66(8): 284311
CrossRef
ADS
Google scholar
|
[50] |
X. X. Wang , Z. Guo , J. Song , H. Jiang , H. Chen , X. Hu . Unique Huygens–Fresnel electromagnetic transportation of chiral Dirac wavelet in topological photonic crystal. Nat. Commun., 2023, 14(1): 3040
CrossRef
ADS
Google scholar
|
[51] |
Q. Wang , C. Zhu , X. Zheng , H. Xue , B. Zhang , Y. D. Chong . Continuum of bound states in a non-Hermitian model. Phys. Rev. Lett., 2023, 130(10): 103602
CrossRef
ADS
arXiv
Google scholar
|
[52] |
S. Fan , W. Suh , J. D. Joannopoulos . Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A, 2003, 20(3): 569
CrossRef
ADS
Google scholar
|
[53] |
Z. Guo , H. Jiang , Y. Li , H. Chen , G. S. Agarwal . Enhancement of electromagnetically induced transparency in metamaterials using long range coupling mediated by a hyperbolic material. Opt. Express, 2018, 26(2): 627
CrossRef
ADS
arXiv
Google scholar
|
[54] |
H. Zhang , K. Zhu , Z. Guo , Y. Chen , Y. Sun , J. Jiang , Y. Li , Z. Yu , H. Chen . Robustness of wireless power transfer systems with parity–time symmetry and asymmetry. Energies, 2023, 16(12): 4605
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |