Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2

Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang

PDF(8624 KB)
PDF(8624 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43200. DOI: 10.1007/s11467-023-1387-y
RESEARCH ARTICLE

Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2

Author information +
History +

Abstract

Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS2 phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS2 is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS2 is an ideal candidate for future spintronics.

Graphical abstract

Keywords

orthorhombic CrS2 / Curie temperature / magnetic anisotropy energy / biaxial strain / first-principles calculations

Cite this article

Download citation ▾
Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang. Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2. Front. Phys., 2024, 19(4): 43200 https://doi.org/10.1007/s11467-023-1387-y

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197
CrossRef ADS Google scholar
[2]
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. C. Tang, C. Y. Zhi. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979
CrossRef ADS Google scholar
[3]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef ADS Google scholar
[4]
M. S. Xu, T. Liang, M. M. Shi, H. Z. Chen. Graphene-like two-dimensional materials. Chem. Rev., 2013, 113(5): 3766
CrossRef ADS Google scholar
[5]
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
CrossRef ADS Google scholar
[6]
J. C. Lei, X. Zhang, Z. Zhou. Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 276
CrossRef ADS Google scholar
[7]
N. D. Mermin, H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
CrossRef ADS Google scholar
[8]
H. H. Kim, B. W. Yang, S. W. Li, S. W. Jiang, C. H. Jin, Z. Tao, G. Nichols, F. Sfigakis, S. Z. Zhong, C. H. Li, S. J. Tian, D. G. Cory, G. X. Miao, J. Shan, K. F. Mak, H. C. Lei, K. Sun, L. Y. Zhao, A. W. Tsen. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11131
CrossRef ADS Google scholar
[9]
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, X. Xu. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol., 2018, 13(7): 544
CrossRef ADS Google scholar
[10]
H. B. Wang, F. R. Fan, S. S. Zhu, H. Wu. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. Europhys. Lett., 2016, 114(4): 47001
CrossRef ADS Google scholar
[11]
Y. J. Deng, Y. J. Yu, Y. C. Song, J. Z. Zhang, N. Z. Wang, Z. Y. Sun, Y. F. Yi, Y. Z. Wu, S. W. Wu, J. Y. Zhu, J. Wang, X. H. Chen, Y. B. Zhang. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
CrossRef ADS Google scholar
[12]
Z. X. Shen, X. Y. Bo, K. Cao, X. G. Wan, L. X. He. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B, 2021, 103(8): 085102
CrossRef ADS Google scholar
[13]
C. Gong, L. Li, Z. L. Li, H. W. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Z. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef ADS Google scholar
[14]
A. O’Neill, S. Rahman, Z. Zhang, P. Schoenherr, T. Yildirim, B. Gu, G. Su, Y. R. Lu, J. Seidel. Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6. ACS Nano, 2023, 17(1): 735
CrossRef ADS Google scholar
[15]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef ADS Google scholar
[16]
D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K. Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta, D. W. McComb, R. K. Kawakami. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett., 2018, 18(5): 3125
CrossRef ADS Google scholar
[17]
R. A. de Groot, F. M. Mueller, P. G. Engen, K. H. J. Buschow. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett., 1983, 50(25): 2024
CrossRef ADS Google scholar
[18]
S. Q. Zhang, R. Z. Xu, W. H. Duan, X. L. Zou. Intrinsic half-metallicity in 2D ternary chalcogenides with high critical temperature and controllable magnetization direction. Adv. Funct. Mater., 2019, 29(14): 1808380
CrossRef ADS Google scholar
[19]
G. J. Zhang, F. Guo, H. Wu, X. K. Wen, L. Yang, W. Jin, W. F. Zhang, H. X. Chang. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun., 2022, 13(1): 5067
CrossRef ADS Google scholar
[20]
F. J. J. Han, X. Yan, F. Li, H. Yu, W. J. Li, X. Zhong, A. Bergara, G. C. Yang. Prediction of monolayer FeP4 with intrinsic half-metal ferrimagnetism above room temperature. Phys. Rev. B, 2023, 107(2): 024414
CrossRef ADS Google scholar
[21]
M. R. Habib, S. P. Wang, W. J. Wang, H. Xiao, S. M. Obaidulla, A. Gayen, Y. Khan, H. Z. Chen, M. S. Xu. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11(42): 20123
CrossRef ADS Google scholar
[22]
X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S. Zhong, H. Wang, V. Bouchiat, M. Nunez Regueiro, N. Rougemaille, J. Coraux, A. Purbawati, A. Hadj-Azzem, Z. Wang, B. Dong, X. Wu, T. Yang, G. Yu, B. Wang, Z. Han, X. Han, Z. Zhang. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res., 2020, 13(12): 3358
CrossRef ADS Google scholar
[23]
L. J. Meng, Z. Zhou, M. Q. Xu, S. Q. Yang, K. P. Si, L. X. Liu, X. G. Wang, H. N. Jiang, B. X. Li, P. X. Qin, P. Zhang, J. L. Wang, Z. Q. Liu, P. Z. Tang, Y. Ye, W. Zhou, L. H. Bao, H. J. Gao, Y. J. Gong. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun., 2021, 12(1): 809
CrossRef ADS Google scholar
[24]
Y. Z. Sun, P. F. Yan, J. Ning, X. Q. Zhang, Y. F. Zhao, Q. W. Gao, M. Kanagaraj, K. P. Zhang, J. J. Li, X. Y. Lu, Y. Yan, Y. Li, Y. B. Xu, L. He. Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers. AIP Adv., 2021, 11(3): 035138
CrossRef ADS Google scholar
[25]
X. Q. Zhang, Q. S. Lu, W. Q. Liu, W. Niu, J. B. Sun, J. Cook, M. Vaninger, P. F. Miceli, D. J. Singh, S. W. Lian, T. R. Chang, X. Q. He, J. Du, L. He, R. Zhang, G. Bian, Y. B. Xu. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492
CrossRef ADS Google scholar
[26]
X. H. Deng, Z. Y. Li. Intrinsic ultra-wide completely spin-polarized state realized in a new CrO2 monolayer. Phys. Chem. Chem. Phys., 2020, 22(30): 17038
CrossRef ADS Google scholar
[27]
B. W. Zhang, J. Sun, J. C. Leng, C. Zhang, J. Wang. Tunable two dimensional ferromagnetic topological half-metal CrO2 by electronic correction and spin direction. Appl. Phys. Lett., 2020, 117(22): 222407
CrossRef ADS Google scholar
[28]
X. H. Tian, J. M. Zhang. The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects. J. Magn. Magn. Mater., 2019, 487: 165300
CrossRef ADS Google scholar
[29]
K. Y. Chen, J. K. Deng, Y. Yan, Q. Shi, T. Y. Chang, X. D. Ding, J. Sun, S. Yang, J. Z. Liu. Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices. npj Comput. Mater., 2021, 7(1): 79
CrossRef ADS Google scholar
[30]
M. Z. Liu, Y. L. Huang, J. Gou, Q. J. Liang, R. Chua, S. S. Arramel, S. Duan, L. Zhang, L. L. Cai, X. Yu, D. Zhong, W. Zhang, A. T. S. Wee, Duan Zhang, L. L. Cai, L. J. Yu, X. Y. Zhong, D. J. Zhang, W. T. S. Wee. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
CrossRef ADS Google scholar
[31]
M. Alsubaie, C. Tang, D. Wijethunge, D. C. Qi, A. J. Du. First-principles study of the enhanced magnetic anisotropy and transition temperature in a CrSe2 monolayer via hydrogenation. ACS Appl. Electron. Mater., 2022, 4(7): 3240
CrossRef ADS Google scholar
[32]
Y. H. Liu, S. Kwon, G. J. de Coster, R. K. Lake, M. R. Neupane. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater., 2022, 6(8): 084004
CrossRef ADS Google scholar
[33]
L. L. Wu, L. W. Zhou, X. Y. Zhou, C. Wang, W. Ji. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B, 2022, 106(8): L081401
CrossRef ADS Google scholar
[34]
B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. W. Zhang, G. Z. Sun, B. Zhao, H. F. Ma, R. X. Wu, Z. M. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. D. Xu, X. D. Duan, W. Ji, X. F. Duan. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
CrossRef ADS Google scholar
[35]
A. L. Coughlin, D. Y. Xie, X. Zhan, Y. Yao, L. Z. Deng, H. Hewa-Walpitage, T. Bontke, C. W. Chu, Y. Li, J. Wang, H. A. Fertig, S. X. Zhang. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett., 2021, 21(22): 9517
CrossRef ADS Google scholar
[36]
I. H. Lee, B. K. Choi, H. J. Kim, M. J. Kim, H. Y. Jeong, J. H. Lee, S. Y. Park, Y. Jo, C. Lee, J. W. Choi, S. W. Cho, S. Lee, Y. Kim, B. H. Kim, K. J. Lee, J. E. Heo, S. H. Chang, F. Li, B. L. Chittari, J. Jung, Y. J. Chang. Modulating curie temperature and magnetic anisotropy in nanoscale-layered Cr2Te3 films: Implications for room-temperature spintronics. ACS Appl. Nano Mater., 2021, 4(5): 4810
CrossRef ADS Google scholar
[37]
K. Lasek, P. M. Coelho, P. Gargiani, M. Valvidares, K. Mohseni, H. L. Meyerheim, I. Kostanovskiy, K. Zberecki, M. Batzill. Van der Waals epitaxy growth of 2D ferromagnetic Cr1+δTe2 nanolayers with concentration-tunable magnetic anisotropy. Appl. Phys. Rev., 2022, 9(1): 011409
CrossRef ADS Google scholar
[38]
G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[39]
G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[40]
P. E. Blöchl. Projected augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[41]
H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[42]
G. Xiao, W. Z. Xiao, Q. Chen, L. L. Wang, Novel two-dimensional ferromagnetic materials CrX2 (X = O.Se) with high Curie temperature. J. Mater. Chem. C, 2022, 10(46): 17665
CrossRef ADS Google scholar
[43]
A. Togo, I. Tanaka. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
CrossRef ADS Google scholar
[44]
G. J. Martyna, M. L. Klein, M. Tuckerman. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4): 2635
CrossRef ADS Google scholar
[45]
F. Mouhat, F. X. Coudert. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B, 2014, 90(22): 224104
CrossRef ADS Google scholar
[46]
L. Xiong, L. Yi, G. Y. Gao. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater., 2014, 360: 98
CrossRef ADS Google scholar
[47]
X. T. Wang, Z. X. Cheng, J. L. Wang, L. Y. Wang, Z. Y. Yu, C. S. Fang, J. T. Yang, G. D. Liu. Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds ZrVTiZ (Z = Al, Ga). RSC Advances, 2016, 6(62): 57041
CrossRef ADS Google scholar
[48]
D. Soriano, M. I. Katsnelson, J. Fernandez-Rossier. Magnetic two-dimensional chromium trihalides: A theoretical perspective. Nano Lett., 2020, 20(9): 6225
CrossRef ADS Google scholar
[49]
M. Subramanian, A. Ramirez, W. Marshall. Structural tuning of ferromagnetism in a 3D cuprate perovskite. Phys. Rev. Lett., 1999, 82(7): 1558
CrossRef ADS Google scholar
[50]
W. X. Li, C. S. Guo, Q. Zang, R. Ding, Y. Zhao. Magnetic phase transition in strained two-dimensional semiconductor MoTeI monolayer. Appl. Surf. Sci., 2021, 536: 147842
CrossRef ADS Google scholar
[51]
Y. Zhu, Y. F. Pan, L. Ge, J. Y. Fan, D. N. Shi, C. L. Ma, J. Hu, R. Q. Wu. Separating RKKY interaction from other exchange mechanisms in two-dimensional magnetic materials. Phys. Rev. B, 2023, 108(4): L041401
CrossRef ADS Google scholar
[52]
L. X. Kang, C. Ye, X. X. Zhao, X. Y. Zhou, J. X. Hu, Q. Li, D. Liu, C. M. Das, J. F. Yang, D. Y. Hu, J. Q. Chen, X. Cao, Y. Zhang, M. Z. Xu, J. Di, D. Tian, P. Song, G. Kutty, Q. S. Zeng, Q. D. Fu, Y. Deng, J. D. Zhou, A. Ariando, F. Miao, G. Hong, Y. Z. Huang, S. J. Pennycook, K. T. Yong, W. Ji, X. R. Wang, Z. Liu. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun., 2020, 11(1): 3729
CrossRef ADS Google scholar
[53]
M. Lan, G. Xiang, Y. Nie, D. Y. Yang, X. Zhang. The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides. RSC Adv., 2016, 6(38): 31758
CrossRef ADS Google scholar
[54]
G. P. Müller, M. Hoffmann, C. Disselkamp, D. Schurhoff, S. Mavros, M. Sallermann, N. S. Kiselev, H. Jonsson, S. Blugel. Spirit: Multifunctional framework for atomistic spin simulations. Phys. Rev. B, 2019, 99(22): 224414
CrossRef ADS Google scholar
[55]
X. T. Fang, B. Z. Zhou, X. C. Wang, W. B. Mi. High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect. Mater. Today Phys., 2022, 28: 100847
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary materials).

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1387-y and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1387-y.

Acknowledgements

This work was financially supported by the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region (Grant No. 2013D01D03), the National Natural Science Foundation of China (Grant Nos. 52073308 and 12004439), the Central South University Research Fund for Sheng Hua Scholars (Grant No. 502033019), Hunan Provincial Innovation Foundation for Postgraduate (Grant No. CX20190107), the State Key Laboratory of Powder Metallurgy at Central South University, the Fundamental Research Funds for the Central Universities of Central South University, the Tianchi-Talent Project for Young Doctors of Xinjiang Uygur Autonomous Region (No. 51052300570), the National Science Foundation of Hunan Province (No. 2021JJ30864), the Key Project of the Natural Science Program of Xinjiang Uygur Autonomous Region (Grant No. 2023D01D03), and the Outstanding Doctoral Student Innovation Project of Xinjiang University (No. XJU2023BS028). This work was carried out in part using computing resources at the High Performance Computing Center of Central South University.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8624 KB)

Accesses

Citations

Detail

Sections
Recommended

/