Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2
Bocheng Lei, Aolin Li, Wenzhe Zhou, Yunpeng Wang, Wei Xiong, Yu Chen, Fangping Ouyang
Room-temperature ferromagnetism and half-metallicity in monolayer orthorhombic CrS2
Two-dimensional materials with high-temperature ferromagnetism and half-metallicity have the latest applications in spintronic devices. Based on first-principles calculations, we have investigated a novel two-dimensional CrS2 phase with an orthorhombic lattice. Our results suggest that it is stable in dynamics, thermodynamics, and mechanics. The ground state of monolayer orthorhombic CrS2 is both ferromagnetic and half-metallic, with a high Curie temperature of 895 K and a large spin-flipping gap on values of 0.804 eV. This room-temperature ferromagnetism and half-metallicity can maintain stability against a strong biaxial strain ranging from −5% to 5%. Meanwhile, increasing strain can significantly maintain the out-of-plane magnetic anisotropy. A density of states analysis, together with the orbital-resolved magnetic anisotropy energy, has revealed that the strain-enhanced MAE is highly related to the 3d-orbital splitting of Cr atoms. Our results suggest the monolayer orthorhombic CrS2 is an ideal candidate for future spintronics.
orthorhombic CrS2 / Curie temperature / magnetic anisotropy energy / biaxial strain / first-principles calculations
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197
CrossRef
ADS
Google scholar
|
[2] |
D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C. C. Tang, C. Y. Zhi. Boron nitride nanotubes and nanosheets. ACS Nano, 2010, 4(6): 2979
CrossRef
ADS
Google scholar
|
[3] |
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef
ADS
Google scholar
|
[4] |
M. S. Xu, T. Liang, M. M. Shi, H. Z. Chen. Graphene-like two-dimensional materials. Chem. Rev., 2013, 113(5): 3766
CrossRef
ADS
Google scholar
|
[5] |
H. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, P. D. Ye. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
CrossRef
ADS
Google scholar
|
[6] |
J. C. Lei, X. Zhang, Z. Zhou. Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10(3): 276
CrossRef
ADS
Google scholar
|
[7] |
N. D. Mermin, H. Wagner. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 1966, 17(22): 1133
CrossRef
ADS
Google scholar
|
[8] |
H. H. Kim, B. W. Yang, S. W. Li, S. W. Jiang, C. H. Jin, Z. Tao, G. Nichols, F. Sfigakis, S. Z. Zhong, C. H. Li, S. J. Tian, D. G. Cory, G. X. Miao, J. Shan, K. F. Mak, H. C. Lei, K. Sun, L. Y. Zhao, A. W. Tsen. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl. Acad. Sci. USA, 2019, 116(23): 11131
CrossRef
ADS
Google scholar
|
[9] |
B. Huang, G. Clark, D. R. Klein, D. MacNeill, E. Navarro-Moratalla, K. L. Seyler, N. Wilson, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao, P. Jarillo-Herrero, X. Xu. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol., 2018, 13(7): 544
CrossRef
ADS
Google scholar
|
[10] |
H. B. Wang, F. R. Fan, S. S. Zhu, H. Wu. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. Europhys. Lett., 2016, 114(4): 47001
CrossRef
ADS
Google scholar
|
[11] |
Y. J. Deng, Y. J. Yu, Y. C. Song, J. Z. Zhang, N. Z. Wang, Z. Y. Sun, Y. F. Yi, Y. Z. Wu, S. W. Wu, J. Y. Zhu, J. Wang, X. H. Chen, Y. B. Zhang. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
CrossRef
ADS
Google scholar
|
[12] |
Z. X. Shen, X. Y. Bo, K. Cao, X. G. Wan, L. X. He. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B, 2021, 103(8): 085102
CrossRef
ADS
Google scholar
|
[13] |
C. Gong, L. Li, Z. L. Li, H. W. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Z. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, X. Zhang. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef
ADS
Google scholar
|
[14] |
A. O’Neill, S. Rahman, Z. Zhang, P. Schoenherr, T. Yildirim, B. Gu, G. Su, Y. R. Lu, J. Seidel. Enhanced room temperature ferromagnetism in highly strained 2D semiconductor Cr2Ge2Te6. ACS Nano, 2023, 17(1): 735
CrossRef
ADS
Google scholar
|
[15] |
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef
ADS
Google scholar
|
[16] |
D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K. Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta, D. W. McComb, R. K. Kawakami. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett., 2018, 18(5): 3125
CrossRef
ADS
Google scholar
|
[17] |
R. A. de Groot, F. M. Mueller, P. G. Engen, K. H. J. Buschow. New class of materials: Half-metallic ferromagnets. Phys. Rev. Lett., 1983, 50(25): 2024
CrossRef
ADS
Google scholar
|
[18] |
S. Q. Zhang, R. Z. Xu, W. H. Duan, X. L. Zou. Intrinsic half-metallicity in 2D ternary chalcogenides with high critical temperature and controllable magnetization direction. Adv. Funct. Mater., 2019, 29(14): 1808380
CrossRef
ADS
Google scholar
|
[19] |
G. J. Zhang, F. Guo, H. Wu, X. K. Wen, L. Yang, W. Jin, W. F. Zhang, H. X. Chang. Above-room-temperature strong intrinsic ferromagnetism in 2D van der Waals Fe3GaTe2 with large perpendicular magnetic anisotropy. Nat. Commun., 2022, 13(1): 5067
CrossRef
ADS
Google scholar
|
[20] |
F. J. J. Han, X. Yan, F. Li, H. Yu, W. J. Li, X. Zhong, A. Bergara, G. C. Yang. Prediction of monolayer FeP4 with intrinsic half-metal ferrimagnetism above room temperature. Phys. Rev. B, 2023, 107(2): 024414
CrossRef
ADS
Google scholar
|
[21] |
M. R. Habib, S. P. Wang, W. J. Wang, H. Xiao, S. M. Obaidulla, A. Gayen, Y. Khan, H. Z. Chen, M. S. Xu. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale, 2019, 11(42): 20123
CrossRef
ADS
Google scholar
|
[22] |
X. Sun, W. Li, X. Wang, Q. Sui, T. Zhang, Z. Wang, L. Liu, D. Li, S. Feng, S. Zhong, H. Wang, V. Bouchiat, M. Nunez Regueiro, N. Rougemaille, J. Coraux, A. Purbawati, A. Hadj-Azzem, Z. Wang, B. Dong, X. Wu, T. Yang, G. Yu, B. Wang, Z. Han, X. Han, Z. Zhang. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res., 2020, 13(12): 3358
CrossRef
ADS
Google scholar
|
[23] |
L. J. Meng, Z. Zhou, M. Q. Xu, S. Q. Yang, K. P. Si, L. X. Liu, X. G. Wang, H. N. Jiang, B. X. Li, P. X. Qin, P. Zhang, J. L. Wang, Z. Q. Liu, P. Z. Tang, Y. Ye, W. Zhou, L. H. Bao, H. J. Gao, Y. J. Gong. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun., 2021, 12(1): 809
CrossRef
ADS
Google scholar
|
[24] |
Y. Z. Sun, P. F. Yan, J. Ning, X. Q. Zhang, Y. F. Zhao, Q. W. Gao, M. Kanagaraj, K. P. Zhang, J. J. Li, X. Y. Lu, Y. Yan, Y. Li, Y. B. Xu, L. He. Ferromagnetism in two-dimensional CrTe2 epitaxial films down to a few atomic layers. AIP Adv., 2021, 11(3): 035138
CrossRef
ADS
Google scholar
|
[25] |
X. Q. Zhang, Q. S. Lu, W. Q. Liu, W. Niu, J. B. Sun, J. Cook, M. Vaninger, P. F. Miceli, D. J. Singh, S. W. Lian, T. R. Chang, X. Q. He, J. Du, L. He, R. Zhang, G. Bian, Y. B. Xu. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun., 2021, 12(1): 2492
CrossRef
ADS
Google scholar
|
[26] |
X. H. Deng, Z. Y. Li. Intrinsic ultra-wide completely spin-polarized state realized in a new CrO2 monolayer. Phys. Chem. Chem. Phys., 2020, 22(30): 17038
CrossRef
ADS
Google scholar
|
[27] |
B. W. Zhang, J. Sun, J. C. Leng, C. Zhang, J. Wang. Tunable two dimensional ferromagnetic topological half-metal CrO2 by electronic correction and spin direction. Appl. Phys. Lett., 2020, 117(22): 222407
CrossRef
ADS
Google scholar
|
[28] |
X. H. Tian, J. M. Zhang. The electronic, magnetic and optical properties of single-layer CrS2 with vacancy defects. J. Magn. Magn. Mater., 2019, 487: 165300
CrossRef
ADS
Google scholar
|
[29] |
K. Y. Chen, J. K. Deng, Y. Yan, Q. Shi, T. Y. Chang, X. D. Ding, J. Sun, S. Yang, J. Z. Liu. Diverse electronic and magnetic properties of CrS2 enabling strain-controlled 2D lateral heterostructure spintronic devices. npj Comput. Mater., 2021, 7(1): 79
CrossRef
ADS
Google scholar
|
[30] |
M. Z. Liu, Y. L. Huang, J. Gou, Q. J. Liang, R. Chua, S. S. Arramel, S. Duan, L. Zhang, L. L. Cai, X. Yu, D. Zhong, W. Zhang, A. T. S. Wee, Duan Zhang, L. L. Cai, L. J. Yu, X. Y. Zhong, D. J. Zhang, W. T. S. Wee. Diverse structures and magnetic properties in nonlayered monolayer chromium selenide. J. Phys. Chem. Lett., 2021, 12(32): 7752
CrossRef
ADS
Google scholar
|
[31] |
M. Alsubaie, C. Tang, D. Wijethunge, D. C. Qi, A. J. Du. First-principles study of the enhanced magnetic anisotropy and transition temperature in a CrSe2 monolayer via hydrogenation. ACS Appl. Electron. Mater., 2022, 4(7): 3240
CrossRef
ADS
Google scholar
|
[32] |
Y. H. Liu, S. Kwon, G. J. de Coster, R. K. Lake, M. R. Neupane. Structural, electronic, and magnetic properties of CrTe2. Phys. Rev. Mater., 2022, 6(8): 084004
CrossRef
ADS
Google scholar
|
[33] |
L. L. Wu, L. W. Zhou, X. Y. Zhou, C. Wang, W. Ji. In-plane epitaxy-strain-tuning intralayer and interlayer magnetic coupling in CrSe2 and CrTe2 monolayers and bilayers. Phys. Rev. B, 2022, 106(8): L081401
CrossRef
ADS
Google scholar
|
[34] |
B. Li, Z. Wan, C. Wang, P. Chen, B. Huang, X. Cheng, Q. Qian, J. Li, Z. W. Zhang, G. Z. Sun, B. Zhao, H. F. Ma, R. X. Wu, Z. M. Wei, Y. Liu, L. Liao, Y. Ye, Y. Huang, X. D. Xu, X. D. Duan, W. Ji, X. F. Duan. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater., 2021, 20(6): 818
CrossRef
ADS
Google scholar
|
[35] |
A. L. Coughlin, D. Y. Xie, X. Zhan, Y. Yao, L. Z. Deng, H. Hewa-Walpitage, T. Bontke, C. W. Chu, Y. Li, J. Wang, H. A. Fertig, S. X. Zhang. Van der Waals superstructure and twisting in self-intercalated magnet with near room-temperature perpendicular ferromagnetism. Nano Lett., 2021, 21(22): 9517
CrossRef
ADS
Google scholar
|
[36] |
I. H. Lee, B. K. Choi, H. J. Kim, M. J. Kim, H. Y. Jeong, J. H. Lee, S. Y. Park, Y. Jo, C. Lee, J. W. Choi, S. W. Cho, S. Lee, Y. Kim, B. H. Kim, K. J. Lee, J. E. Heo, S. H. Chang, F. Li, B. L. Chittari, J. Jung, Y. J. Chang. Modulating curie temperature and magnetic anisotropy in nanoscale-layered Cr2Te3 films: Implications for room-temperature spintronics. ACS Appl. Nano Mater., 2021, 4(5): 4810
CrossRef
ADS
Google scholar
|
[37] |
K. Lasek, P. M. Coelho, P. Gargiani, M. Valvidares, K. Mohseni, H. L. Meyerheim, I. Kostanovskiy, K. Zberecki, M. Batzill. Van der Waals epitaxy growth of 2D ferromagnetic Cr1+δTe2 nanolayers with concentration-tunable magnetic anisotropy. Appl. Phys. Rev., 2022, 9(1): 011409
CrossRef
ADS
Google scholar
|
[38] |
G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef
ADS
Google scholar
|
[39] |
G. Kresse, J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[40] |
P. E. Blöchl. Projected augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[41] |
H. J. Monkhorst, J. D. Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef
ADS
Google scholar
|
[42] |
G. Xiao, W. Z. Xiao, Q. Chen, L. L. Wang, Novel two-dimensional ferromagnetic materials CrX2 (X = O.Se) with high Curie temperature. J. Mater. Chem. C, 2022, 10(46): 17665
CrossRef
ADS
Google scholar
|
[43] |
A. Togo, I. Tanaka. First principles phonon calculations in materials science. Scr. Mater., 2015, 108: 1
CrossRef
ADS
Google scholar
|
[44] |
G. J. Martyna, M. L. Klein, M. Tuckerman. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4): 2635
CrossRef
ADS
Google scholar
|
[45] |
F. Mouhat, F. X. Coudert. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B, 2014, 90(22): 224104
CrossRef
ADS
Google scholar
|
[46] |
L. Xiong, L. Yi, G. Y. Gao. Search for half-metallic magnets with large half-metallic gaps in the quaternary Heusler alloys CoFeTiZ and CoFeVZ (Z = Al, Ga, Si, Ge, As, Sb). J. Magn. Magn. Mater., 2014, 360: 98
CrossRef
ADS
Google scholar
|
[47] |
X. T. Wang, Z. X. Cheng, J. L. Wang, L. Y. Wang, Z. Y. Yu, C. S. Fang, J. T. Yang, G. D. Liu. Origin of the half-metallic band-gap in newly designed quaternary Heusler compounds ZrVTiZ (Z = Al, Ga). RSC Advances, 2016, 6(62): 57041
CrossRef
ADS
Google scholar
|
[48] |
D. Soriano, M. I. Katsnelson, J. Fernandez-Rossier. Magnetic two-dimensional chromium trihalides: A theoretical perspective. Nano Lett., 2020, 20(9): 6225
CrossRef
ADS
Google scholar
|
[49] |
M. Subramanian, A. Ramirez, W. Marshall. Structural tuning of ferromagnetism in a 3D cuprate perovskite. Phys. Rev. Lett., 1999, 82(7): 1558
CrossRef
ADS
Google scholar
|
[50] |
W. X. Li, C. S. Guo, Q. Zang, R. Ding, Y. Zhao. Magnetic phase transition in strained two-dimensional semiconductor MoTeI monolayer. Appl. Surf. Sci., 2021, 536: 147842
CrossRef
ADS
Google scholar
|
[51] |
Y. Zhu, Y. F. Pan, L. Ge, J. Y. Fan, D. N. Shi, C. L. Ma, J. Hu, R. Q. Wu. Separating RKKY interaction from other exchange mechanisms in two-dimensional magnetic materials. Phys. Rev. B, 2023, 108(4): L041401
CrossRef
ADS
Google scholar
|
[52] |
L. X. Kang, C. Ye, X. X. Zhao, X. Y. Zhou, J. X. Hu, Q. Li, D. Liu, C. M. Das, J. F. Yang, D. Y. Hu, J. Q. Chen, X. Cao, Y. Zhang, M. Z. Xu, J. Di, D. Tian, P. Song, G. Kutty, Q. S. Zeng, Q. D. Fu, Y. Deng, J. D. Zhou, A. Ariando, F. Miao, G. Hong, Y. Z. Huang, S. J. Pennycook, K. T. Yong, W. Ji, X. R. Wang, Z. Liu. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun., 2020, 11(1): 3729
CrossRef
ADS
Google scholar
|
[53] |
M. Lan, G. Xiang, Y. Nie, D. Y. Yang, X. Zhang. The static and dynamic magnetic properties of monolayer iron dioxide and iron dichalcogenides. RSC Adv., 2016, 6(38): 31758
CrossRef
ADS
Google scholar
|
[54] |
G. P. Müller, M. Hoffmann, C. Disselkamp, D. Schurhoff, S. Mavros, M. Sallermann, N. S. Kiselev, H. Jonsson, S. Blugel. Spirit: Multifunctional framework for atomistic spin simulations. Phys. Rev. B, 2019, 99(22): 224414
CrossRef
ADS
Google scholar
|
[55] |
X. T. Fang, B. Z. Zhou, X. C. Wang, W. B. Mi. High Curie temperature and large perpendicular magnetic anisotropy in two-dimensional half metallic OsI3 monolayer with quantum anomalous Hall effect. Mater. Today Phys., 2022, 28: 100847
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |