Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy
Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu
Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy
Developing advanced hydrogen storage materials with high capacity and efficient reversibility is a crucial aspect for utilizing hydrogen source as a promising alternate to fossil fuels. In this paper, we have systematically investigated the hydrogen storage properties of neutral and negatively charged C9N4 monolayer based on density functional theory (DFT). Our foundings indicate that injecting additional electrons into the adsorbent significantly boosts the adsorption capacity of C9N4 monolayer to H2 molecules. The gravimetric density of negatively charged C9N4 monolayer can reach up to 10.80 wt% when fully covered with hydrogen. Unlike other hydrogen storage methods, the storage and release processes happen automatically upon introducing or removing extra electrons. Moreover, these operations can be easily adjusted through activating or deactivating the charging voltage. As a result, the method is easily reversible and has tunable kinetics without requiring particular activators. Significantly, C9N4 is proved to be a suitable candidate for efficient electron injection/release due to its well electrical conductivity. Our work can serve as a valuable guide in the quest for a novel category of materials for hydrogen storage with high capacity.
hydrogen storage / C9N4 monolayer / charge modulation / density functional theory
[1] |
J. Tollefson . Hydrogen vehicles: Fuel of the future. Nature, 2010, 464(7293): 1262
CrossRef
ADS
Google scholar
|
[2] |
L. Schlapbach , A. Züttel . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353
CrossRef
ADS
Google scholar
|
[3] |
F. Schüth , B. Bogdanović , M. Felderhoff . Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. (Camb.), 2004, 2249(20): 2249
CrossRef
ADS
Google scholar
|
[4] |
F. Ding , B. I. Yakobson . Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys., 2011, 6(2): 142
CrossRef
ADS
Google scholar
|
[5] |
X. Zhou , J. Zhou , Q. Sun . Tripyrrylmethane based 2D porous structure for hydrogen storage. Front. Phys., 2011, 6(2): 220
CrossRef
ADS
Google scholar
|
[6] |
J. Li , T. Furuta , H. Goto , T. Ohashi , Y. Fujiwara , S. Yip . Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys., 2003, 119(4): 2376
CrossRef
ADS
Google scholar
|
[7] |
P. Jena . Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett., 2011, 2(3): 206
CrossRef
ADS
Google scholar
|
[8] |
L. Wang , R. T. Yang . New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ. Sci., 2008, 1(2): 268
CrossRef
ADS
Google scholar
|
[9] |
L. Song , C. Jiang , S. Liu , C. Jiao , X. Si , S. Wang , F. Li , J. Zhang , L. Sun , F. Xu , F. Huang . Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Front. Phys., 2011, 6(2): 151
CrossRef
ADS
Google scholar
|
[10] |
H.ZhangX.LiY.Tang, DFT study of dihydrogen interactions with lithium containing organic complexes C4H4−mLim and C5H5−mLim (m = 1, 2), Front. Phys. 6(2), 231 (2011)
|
[11] |
M. Yoon , S. Yang , C. Hicke , E. Wang , D. Geohegan , Z. Zhang . Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett., 2008, 100(20): 206806
CrossRef
ADS
Google scholar
|
[12] |
Q. Sun , P. Jena , Q. Wang , M. Marquez . First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc., 2006, 128(30): 9741
CrossRef
ADS
Google scholar
|
[13] |
Y. H. Cheng , C. Y. Zhang , J. Ren , K. Y. Tong . Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys., 2016, 11(5): 113101
CrossRef
ADS
Google scholar
|
[14] |
Z. Zhang , J. Li , Q. Jiang . Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review. Front. Phys., 2011, 6(2): 162
CrossRef
ADS
Google scholar
|
[15] |
Y. Zhao , Y. H. Kim , A. Dillon , M. Heben , S. Zhang . Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett., 2005, 94(15): 155504
CrossRef
ADS
Google scholar
|
[16] |
X. K. Kong , Q. W. Chen , Z. Y. Lun . The influence of N‐doped carbon materials on supported Pd: Enhanced hydrogen storage and oxygen reduction performance. ChemPhysChem, 2014, 15(2): 344
CrossRef
ADS
Google scholar
|
[17] |
S. Li , H. Zhao , P. Jena . Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Front. Phys., 2011, 6(2): 204
CrossRef
ADS
Google scholar
|
[18] |
Q. Sun , Q. Wang , P. Jena , Y. Kawazoe . Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc., 2005, 127(42): 14582
CrossRef
ADS
Google scholar
|
[19] |
Y. Zhang , H. Dai . Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett., 2000, 77(19): 3015
CrossRef
ADS
Google scholar
|
[20] |
Q. Fu , L. Yuan , Y. Luo , J. Yang . Exploring at nanoscale from first principles. Front. Phys. China, 2009, 4(3): 256
CrossRef
ADS
Google scholar
|
[21] |
M. Yoon , S. Yang , E. Wang , Z. Zhang . Charged fullerenes as high-capacity hydrogen storage media. Proc. Natl. Acad. Sci. USA, 2007, 7(9): 2578
|
[22] |
J. Niu , B. Rao , P. Jena . Binding of hydrogen molecules by a transition-metal ion. Phys. Rev. Lett., 1992, 68(15): 2277
CrossRef
ADS
Google scholar
|
[23] |
J. Zhou , Q. Wang , Q. Sun , P. Jena , X. Chen . Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA, 2010, 107(7): 2801
CrossRef
ADS
Google scholar
|
[24] |
H.ChengJ.C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbon−nitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
|
[25] |
Z. Ma , J. Zhuang , X. Zhang , Z. Zhou . SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Front. Phys., 2018, 13(3): 138104
CrossRef
ADS
Google scholar
|
[26] |
Q. Gao , H. L. Wang , L. F. Zhang , S. L. Hu , Z. P. Hu . Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets. Front. Phys., 2018, 13(3): 138108
CrossRef
ADS
Google scholar
|
[27] |
L. Ju , C. Liu , L. Shi , L. Sun . The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst. Mater. Res. Express, 2019, 6(11): 115545
CrossRef
ADS
Google scholar
|
[28] |
C. He , J. H. Zhang , W. X. Zhang , T. T. Li . Type-II InSe/g-C3N4 heterostructure as a high-efficiency oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Phys. Chem. Lett., 2019, 10(11): 3122
CrossRef
ADS
Google scholar
|
[29] |
J.LiuB.ChengJ.Yu, A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure, Phys. Chem. Chem. Phys. 18(45), 31175 (2016)
|
[30] |
G. Zhang , M. Zhang , X. Ye , X. Qiu , S. Lin , X. Wang . Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater., 2014, 26(5): 805
CrossRef
ADS
Google scholar
|
[31] |
J. Sun , J. Zhang , M. Zhang , M. Antonietti , X. Fu , X. Wang . Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun., 2012, 3(1): 1139
CrossRef
ADS
Google scholar
|
[32] |
X. Ye , Y. Cui , X. Wang . Ferrocene‐modified carbon nitride for direct oxidation of benzene to phenol with visible light. ChemSusChem, 2014, 7(3): 738
CrossRef
ADS
Google scholar
|
[33] |
J. Zhang , Y. Chen , X. Wang . Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci., 2015, 8(11): 3092
CrossRef
ADS
Google scholar
|
[34] |
S. P. Kaur , T. Hussain , T. Kaewmaraya , T. J. D. Kumar . Reversible hydrogen storage tendency of light-metal (Li/Na/K) decorated carbon nitride (C9N4) monolayer. Int. J. Hydrogen Energy, 2023, 48(67): 26301
CrossRef
ADS
Google scholar
|
[35] |
J. Huang , C. Zhou , X. Duan . Li decorated C9N4 monolayer as a potential material for hydrogen storage. Int. J. Hydrogen Energy, 2021, 46(65): 32929
CrossRef
ADS
Google scholar
|
[36] |
X. Tan , L. Kou , H. A. Tahini , S. C. Smith . Charge modulation in graphitic carbon nitride as a switchable approach to high‐capacity hydrogen storage. ChemSusChem, 2015, 8(21): 3626
CrossRef
ADS
Google scholar
|
[37] |
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef
ADS
Google scholar
|
[38] |
J. P. Perdew , Y. Wang . Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244
CrossRef
ADS
Google scholar
|
[39] |
J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
CrossRef
ADS
Google scholar
|
[40] |
S. Grimme . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef
ADS
Google scholar
|
[41] |
S. Liu , H. Yin , P. F. Liu . Strain-dependent electronic and mechanical properties in one-dimensional topological insulator Nb4SiTe4. Phys. Rev. B, 2023, 108(4): 045411
CrossRef
ADS
Google scholar
|
[42] |
L. Ju , Y. Ma , X. Tan , L. Kou . Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures. J. Am. Chem. Soc., 2023, 145(48): 26393
CrossRef
ADS
Google scholar
|
[43] |
B. Mortazavi , M. Shahrokhi , A. V. Shapeev , T. Rabczuk , X. Zhuang . Prediction of C7N6 and C9N4: Stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties. J. Mater. Chem. C, 2019, 7(35): 10908
CrossRef
ADS
Google scholar
|
[44] |
M. Yoon , S. Yang , E. Wang , Z. Zhang . Charged fullerenes as high-capacity hydrogen storage media. Nano Lett., 2007, 7(9): 2578
CrossRef
ADS
Google scholar
|
[45] |
Y. Liu , L. Ren , Y. He , H. P. Cheng . Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations. J. Phys.: Condens. Matter, 2010, 22(44): 445301
CrossRef
ADS
Google scholar
|
[46] |
L. Bi , Z. Miao , Y. Ge , Z. Liu , Y. Xu , J. Yin , X. Huang , Y. Wang , Z. Yang . Density functional theory study on hydrogen storage capacity of metal-embedded penta-octa-graphene. Int. J. Hydrogen Energy, 2022, 47(76): 32552
CrossRef
ADS
Google scholar
|
[47] |
N. Khossossi , Y. Benhouria , S. R. Naqvi , P. K. Panda , I. Essaoudi , A. Ainane , R. Ahuja . Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustain. Energy Fuels, 2020, 4(9): 4538
CrossRef
ADS
Google scholar
|
[48] |
S. Haldar , S. Mukherjee , C. V. Singh , Hydrogen storage in Li . Na and Ca decorated and defective borophene: A first principles study. RSC Adv., 2018, 8(37): 20748
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |