Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy

Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu

PDF(4491 KB)
PDF(4491 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43208. DOI: 10.1007/s11467-023-1385-0
RESEARCH ARTICLE

Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy

Author information +
History +

Abstract

Developing advanced hydrogen storage materials with high capacity and efficient reversibility is a crucial aspect for utilizing hydrogen source as a promising alternate to fossil fuels. In this paper, we have systematically investigated the hydrogen storage properties of neutral and negatively charged C9N4 monolayer based on density functional theory (DFT). Our foundings indicate that injecting additional electrons into the adsorbent significantly boosts the adsorption capacity of C9N4 monolayer to H2 molecules. The gravimetric density of negatively charged C9N4 monolayer can reach up to 10.80 wt% when fully covered with hydrogen. Unlike other hydrogen storage methods, the storage and release processes happen automatically upon introducing or removing extra electrons. Moreover, these operations can be easily adjusted through activating or deactivating the charging voltage. As a result, the method is easily reversible and has tunable kinetics without requiring particular activators. Significantly, C9N4 is proved to be a suitable candidate for efficient electron injection/release due to its well electrical conductivity. Our work can serve as a valuable guide in the quest for a novel category of materials for hydrogen storage with high capacity.

Graphical abstract

Keywords

hydrogen storage / C9N4 monolayer / charge modulation / density functional theory

Cite this article

Download citation ▾
Lin Ju, Junxian Liu, Minghui Wang, Shenbo Yang, Shuli Liu. Modulation of charge in C9N4 monolayer for a high-capacity hydrogen storage as a switchable strategy. Front. Phys., 2024, 19(4): 43208 https://doi.org/10.1007/s11467-023-1385-0

References

[1]
J. Tollefson . Hydrogen vehicles: Fuel of the future. Nature, 2010, 464(7293): 1262
CrossRef ADS Google scholar
[2]
L. Schlapbach , A. Züttel . Hydrogen-storage materials for mobile applications. Nature, 2001, 414(6861): 353
CrossRef ADS Google scholar
[3]
F. Schüth , B. Bogdanović , M. Felderhoff . Light metal hydrides and complex hydrides for hydrogen storage. Chem. Commun. (Camb.), 2004, 2249(20): 2249
CrossRef ADS Google scholar
[4]
F. Ding , B. I. Yakobson . Challenges in hydrogen adsorptions: From physisorption to chemisorption. Front. Phys., 2011, 6(2): 142
CrossRef ADS Google scholar
[5]
X. Zhou , J. Zhou , Q. Sun . Tripyrrylmethane based 2D porous structure for hydrogen storage. Front. Phys., 2011, 6(2): 220
CrossRef ADS Google scholar
[6]
J. Li , T. Furuta , H. Goto , T. Ohashi , Y. Fujiwara , S. Yip . Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures. J. Chem. Phys., 2003, 119(4): 2376
CrossRef ADS Google scholar
[7]
P. Jena . Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett., 2011, 2(3): 206
CrossRef ADS Google scholar
[8]
L. Wang , R. T. Yang . New sorbents for hydrogen storage by hydrogen spillover – a review. Energy Environ. Sci., 2008, 1(2): 268
CrossRef ADS Google scholar
[9]
L. Song , C. Jiang , S. Liu , C. Jiao , X. Si , S. Wang , F. Li , J. Zhang , L. Sun , F. Xu , F. Huang . Progress in improving thermodynamics and kinetics of new hydrogen storage materials. Front. Phys., 2011, 6(2): 151
CrossRef ADS Google scholar
[10]
H.ZhangX.LiY.Tang, DFT study of dihydrogen interactions with lithium containing organic complexes C4H4−mLim and C5H5−mLim (m = 1, 2), Front. Phys. 6(2), 231 (2011)
[11]
M. Yoon , S. Yang , C. Hicke , E. Wang , D. Geohegan , Z. Zhang . Calcium as the superior coating metal in functionalization of carbon fullerenes for high-capacity hydrogen storage. Phys. Rev. Lett., 2008, 100(20): 206806
CrossRef ADS Google scholar
[12]
Q. Sun , P. Jena , Q. Wang , M. Marquez . First-principles study of hydrogen storage on Li12C60. J. Am. Chem. Soc., 2006, 128(30): 9741
CrossRef ADS Google scholar
[13]
Y. H. Cheng , C. Y. Zhang , J. Ren , K. Y. Tong . Hydrogen storage in Li-doped fullerene-intercalated hexagonal boron nitrogen layers. Front. Phys., 2016, 11(5): 113101
CrossRef ADS Google scholar
[14]
Z. Zhang , J. Li , Q. Jiang . Density functional theory calculations of the metal-doped carbon nanostructures as hydrogen storage systems under electric fields: A review. Front. Phys., 2011, 6(2): 162
CrossRef ADS Google scholar
[15]
Y. Zhao , Y. H. Kim , A. Dillon , M. Heben , S. Zhang . Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Lett., 2005, 94(15): 155504
CrossRef ADS Google scholar
[16]
X. K. Kong , Q. W. Chen , Z. Y. Lun . The influence of N‐doped carbon materials on supported Pd: Enhanced hydrogen storage and oxygen reduction performance. ChemPhysChem, 2014, 15(2): 344
CrossRef ADS Google scholar
[17]
S. Li , H. Zhao , P. Jena . Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Front. Phys., 2011, 6(2): 204
CrossRef ADS Google scholar
[18]
Q. Sun , Q. Wang , P. Jena , Y. Kawazoe . Clustering of Ti on a C60 surface and its effect on hydrogen storage. J. Am. Chem. Soc., 2005, 127(42): 14582
CrossRef ADS Google scholar
[19]
Y. Zhang , H. Dai . Formation of metal nanowires on suspended single-walled carbon nanotubes. Appl. Phys. Lett., 2000, 77(19): 3015
CrossRef ADS Google scholar
[20]
Q. Fu , L. Yuan , Y. Luo , J. Yang . Exploring at nanoscale from first principles. Front. Phys. China, 2009, 4(3): 256
CrossRef ADS Google scholar
[21]
M. Yoon , S. Yang , E. Wang , Z. Zhang . Charged fullerenes as high-capacity hydrogen storage media. Proc. Natl. Acad. Sci. USA, 2007, 7(9): 2578
[22]
J. Niu , B. Rao , P. Jena . Binding of hydrogen molecules by a transition-metal ion. Phys. Rev. Lett., 1992, 68(15): 2277
CrossRef ADS Google scholar
[23]
J. Zhou , Q. Wang , Q. Sun , P. Jena , X. Chen . Electric field enhanced hydrogen storage on polarizable materials substrates. Proc. Natl. Acad. Sci. USA, 2010, 107(7): 2801
CrossRef ADS Google scholar
[24]
H.ChengJ.C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbon−nitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
[25]
Z. Ma , J. Zhuang , X. Zhang , Z. Zhou . SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts. Front. Phys., 2018, 13(3): 138104
CrossRef ADS Google scholar
[26]
Q. Gao , H. L. Wang , L. F. Zhang , S. L. Hu , Z. P. Hu . Computational study on the half-metallicity in transition metal–oxide-incorporated 2D g-C3N4 nanosheets. Front. Phys., 2018, 13(3): 138108
CrossRef ADS Google scholar
[27]
L. Ju , C. Liu , L. Shi , L. Sun . The high-speed channel made of metal for interfacial charge transfer in Z-scheme g-C3N4/MoS2 water-splitting photocatalyst. Mater. Res. Express, 2019, 6(11): 115545
CrossRef ADS Google scholar
[28]
C. He , J. H. Zhang , W. X. Zhang , T. T. Li . Type-II InSe/g-C3N4 heterostructure as a high-efficiency oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Phys. Chem. Lett., 2019, 10(11): 3122
CrossRef ADS Google scholar
[29]
J.LiuB.ChengJ.Yu, A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure, Phys. Chem. Chem. Phys. 18(45), 31175 (2016)
[30]
G. Zhang , M. Zhang , X. Ye , X. Qiu , S. Lin , X. Wang . Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater., 2014, 26(5): 805
CrossRef ADS Google scholar
[31]
J. Sun , J. Zhang , M. Zhang , M. Antonietti , X. Fu , X. Wang . Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles. Nat. Commun., 2012, 3(1): 1139
CrossRef ADS Google scholar
[32]
X. Ye , Y. Cui , X. Wang . Ferrocene‐modified carbon nitride for direct oxidation of benzene to phenol with visible light. ChemSusChem, 2014, 7(3): 738
CrossRef ADS Google scholar
[33]
J. Zhang , Y. Chen , X. Wang . Two-dimensional covalent carbon nitride nanosheets: Synthesis, functionalization, and applications. Energy Environ. Sci., 2015, 8(11): 3092
CrossRef ADS Google scholar
[34]
S. P. Kaur , T. Hussain , T. Kaewmaraya , T. J. D. Kumar . Reversible hydrogen storage tendency of light-metal (Li/Na/K) decorated carbon nitride (C9N4) monolayer. Int. J. Hydrogen Energy, 2023, 48(67): 26301
CrossRef ADS Google scholar
[35]
J. Huang , C. Zhou , X. Duan . Li decorated C9N4 monolayer as a potential material for hydrogen storage. Int. J. Hydrogen Energy, 2021, 46(65): 32929
CrossRef ADS Google scholar
[36]
X. Tan , L. Kou , H. A. Tahini , S. C. Smith . Charge modulation in graphitic carbon nitride as a switchable approach to high‐capacity hydrogen storage. ChemSusChem, 2015, 8(21): 3626
CrossRef ADS Google scholar
[37]
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[38]
J. P. Perdew , Y. Wang . Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 1992, 45(23): 13244
CrossRef ADS Google scholar
[39]
J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
CrossRef ADS Google scholar
[40]
S. Grimme . Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef ADS Google scholar
[41]
S. Liu , H. Yin , P. F. Liu . Strain-dependent electronic and mechanical properties in one-dimensional topological insulator Nb4SiTe4. Phys. Rev. B, 2023, 108(4): 045411
CrossRef ADS Google scholar
[42]
L. Ju , Y. Ma , X. Tan , L. Kou . Controllable electrocatalytic to photocatalytic conversion in ferroelectric heterostructures. J. Am. Chem. Soc., 2023, 145(48): 26393
CrossRef ADS Google scholar
[43]
B. Mortazavi , M. Shahrokhi , A. V. Shapeev , T. Rabczuk , X. Zhuang . Prediction of C7N6 and C9N4: Stable and strong porous carbon-nitride nanosheets with attractive electronic and optical properties. J. Mater. Chem. C, 2019, 7(35): 10908
CrossRef ADS Google scholar
[44]
M. Yoon , S. Yang , E. Wang , Z. Zhang . Charged fullerenes as high-capacity hydrogen storage media. Nano Lett., 2007, 7(9): 2578
CrossRef ADS Google scholar
[45]
Y. Liu , L. Ren , Y. He , H. P. Cheng . Titanium-decorated graphene for high-capacity hydrogen storage studied by density functional simulations. J. Phys.: Condens. Matter, 2010, 22(44): 445301
CrossRef ADS Google scholar
[46]
L. Bi , Z. Miao , Y. Ge , Z. Liu , Y. Xu , J. Yin , X. Huang , Y. Wang , Z. Yang . Density functional theory study on hydrogen storage capacity of metal-embedded penta-octa-graphene. Int. J. Hydrogen Energy, 2022, 47(76): 32552
CrossRef ADS Google scholar
[47]
N. Khossossi , Y. Benhouria , S. R. Naqvi , P. K. Panda , I. Essaoudi , A. Ainane , R. Ahuja . Hydrogen storage characteristics of Li and Na decorated 2D boron phosphide. Sustain. Energy Fuels, 2020, 4(9): 4538
CrossRef ADS Google scholar
[48]
S. Haldar , S. Mukherjee , C. V. Singh , Hydrogen storage in Li . Na and Ca decorated and defective borophene: A first principles study. RSC Adv., 2018, 8(37): 20748
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1385-0 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1385-0.

Acknowledgements

We thank Jing Xue, Wanyi Zhao and Kaiyue Liu for their contributions to the image and text editions. The work was founded by Henan Scientific Research Fund for Returned Scholars, the Young Scientist Project of Henan Province (Grant No. 225200810103), the Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant No. 24HASTIT013), Henan College Key Research Project (Grant No. 24A430002), the Natural Science Foundation of Henan Province (Grant No. 232300420128), the Scientific Research Innovation Team Project of Anyang Normal University (Grant No. 2023AYSYKYCXTD04), and the College Students Innovation Fund of Anyang Normal University (Grant No. 202310479077).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4491 KB)

Accesses

Citations

Detail

Sections
Recommended

/