Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics

Zhexi He, Yifan Zhao, Yujing Du, Meng Zhao, Yuxuan Jiang, Ming Liu, Ziyao Zhou

PDF(7453 KB)
PDF(7453 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43206. DOI: 10.1007/s11467-023-1377-0
RESEARCH ARTICLE

Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics

Author information +
History +

Abstract

Flexible electronics/spintronics attracts researchers’ attention for their application potential abroad in wearable devices, healthcare, and other areas. Those devices’ performance (speed, energy consumption) is highly dependent on manipulating information bits (spin-orientation in flexible spintronics). In this work, we established an organic photovoltaic (OPV)/ZnO/Pt/Co/Pt heterostructure on flexible PET substrates with perpendicular magnetic anisotropy (PMA). Under sunlight illumination, the photoelectrons generated from the OPV layer transfer into the PMA heterostructure, then they reduce the PMA strength by enhancing the interfacial Rashba field accordingly. The coercive field (Hc) reduces from 800 Oe to 500 Oe at its maximum, and the magnetization can be switched up and down reversibly. The stability of sunlight control of magnetization reversal under various bending conditions is also tested for flexible spintronic applications. Lastly, the voltage output of sunlight-driven PMA is achieved in our prototype device, exhibiting an excellent angular dependence and opening a door towards solar-driven flexible spintronics with much lower energy consumption.

Graphical abstract

Keywords

interfacial magnetoelectric coupling / perpendicular magnetic anisotropy / deterministic magnetization reversal / photovoltaic control of magnetism

Cite this article

Download citation ▾
Zhexi He, Yifan Zhao, Yujing Du, Meng Zhao, Yuxuan Jiang, Ming Liu, Ziyao Zhou. Solar manipulations of perpendicular magnetic anisotropy for flexible spintronics. Front. Phys., 2024, 19(4): 43206 https://doi.org/10.1007/s11467-023-1377-0

References

[1]
X. T. Zheng , Z. Yang , L. Sutarlie , M. Thangaveloo , Y. Yu , N. Salleh , J. S. Chin , Z. Xiong , D. L. Becker , X. J. Loh , B. C. K. Tee , X. Su . Battery-free and AI-enabled multiplexed sensor patches for wound monitoring. Sci. Adv., 2023, 9(24): eadg6670
CrossRef ADS Google scholar
[2]
Y. Zhao , R. Peng , Y. Guo , Z. Liu , Y. Dong , S. Zhao , Y. Li , G. Dong , Y. Hu , J. Zhang , Y. Peng , T. Yang , B. Tian , Y. Zhao , Z. Zhou , Z. Jiang , Z. Luo , M. Liu . Ultraflexible and malleable Fe/BaTiO3 multiferroic heterostructures for functional devices. Adv. Funct. Mater., 2021, 31(16): 2009376
CrossRef ADS Google scholar
[3]
Y. Cao , N. Wang , H. Tian , J. Guo , Y. Wei , H. Chen , Y. Miao , W. Zou , K. Pan , Y. He , H. Cao , Y. Ke , M. Xu , Y. Wang , M. Yang , K. Du , Z. Fu , D. Kong , D. Dai , Y. Jin , G. Li , H. Li , Q. Peng , J. Wang , W. Huang . Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249
CrossRef ADS Google scholar
[4]
S.OtaA.AndoD.Chiba, A flexible giant magnetoresistive device for sensing strain direction, Nat. Electron. 1(2), 124 (2018)
[5]
S. Park , S. W. Heo , W. Lee , D. Inoue , Z. Jiang , K. Yu , H. Jinno , D. Hashizume , M. Sekino , T. Yokota , K. Fukuda , K. Tajima , T. Someya . Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 2018, 561(7724): 516
CrossRef ADS Google scholar
[6]
S. Bauer . Flexible electronics: Sophisticated skin. Nat. Mater., 2013, 12(10): 871
CrossRef ADS Google scholar
[7]
Y.LeiY.ChenR.ZhangY.LiQ.YanS.LeeY.YuH.TsaiW.ChoiK.WangY.LuoY.GuX.ZhengC.WangC.WangH.HuY.LiB.QiM.LinZ.ZhangS.A. DayehM.PharrD.P. FenningY.H. LoJ.LuoK.YangJ.YooW.NieS.Xu, A fabrication process for flexible single-crystal perovskite devices, Nature 583(7818), 790 (2020)
[8]
J. Viventi , D. H. Kim , L. Vigeland , E. S. Frechette , J. A. Blanco , Y. S. Kim , A. E. Avrin , V. R. Tiruvadi , S. W. Hwang , A. C. Vanleer , D. F. Wulsin , K. Davis , C. E. Gelber , L. Palmer , J. Van der Spiegel , J. Wu , J. Xiao , Y. Huang , D. Contreras , J. A. Rogers , B. Litt . Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci., 2011, 14(12): 1599
CrossRef ADS Google scholar
[9]
X.CaiY.LiuJ.ZhaF.TanB.ZhangW.YanJ.ZhaoB.LuJ.ZhouC.Tan, A flexible and safe planar zinc-ion micro-battery with ultrahigh energy density enabled by interfacial engineering for wearable sensing systems, Adv. Funct. Mater. 33(29), 2303009 (2023)
[10]
Y. Zhang , Y. Wang , C. Wang , Y. Zhao , W. Jing , S. Wang , Y. Zhang , X. Xu , F. Zhang , K. Yu , Q. Mao , Q. Lin , F. Han , B. Tian , Z. Zhou , L. Zhao , W. Ren , M. Liu , Z. Jiang . Superior performances via designed multiple embossments within interfaces for flexible pressure sensors. Chem. Eng. J., 2023, 454: 139990
CrossRef ADS Google scholar
[11]
G. Dong , Z. Zhou , X. Xue , Y. Zhang , B. Peng , M. Guan , S. Zhao , Z. Hu , W. Ren , Z. G. Ye , M. Liu . Ferroelectric phase transition induced a large FMR tuning in self-assembled BaTiO3:Y3Fe5O12 multiferroic composites. ACS Appl. Mater. Interfaces, 2017, 9(36): 30733
CrossRef ADS Google scholar
[12]
C. Wu , X. Pan , F. Lin , Z. Cui , Y. He , G. Chen , Y. Zeng , X. Liu , Q. Chen , D. Sun , Z. Hai . TiB2/SiCN thin-film strain gauges fabricated by direct writing for high-temperature application. IEEE Sens. J., 2022, 22(12): 11517
CrossRef ADS Google scholar
[13]
L. Zhu . Switching of perpendicular magnetization by spin−orbit torque. Adv. Mater., 2023, 35(48): 2300853
CrossRef ADS Google scholar
[14]
H. Yang , M. Ormaza , Z. Chi , E. Dolan , J. Ingla-Aynes , C. K. Safeer , F. Herling , N. Ontoso , M. Gobbi , B. Martin-Garcia , F. Schiller , L. E. Hueso , F. Casanova . Gate-tunable spin hall effect in an all-light-element heterostructure: Graphene with copper oxide. Nano Lett., 2023, 23(10): 4406
CrossRef ADS Google scholar
[15]
J. Han , P. Zhang , J. T. Hou , S. A. Siddiqui , L. Liu . Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science, 2019, 366(6469): 1121
CrossRef ADS Google scholar
[16]
H. Fulara , M. Zahedinejad , R. Khymyn , A. A. Awad , S. Muralidhar , M. Dvornik , J. Akerman . Spin–orbit torque-driven propagating spin waves. Sci. Adv., 2019, 5(9): eaax8467
CrossRef ADS Google scholar
[17]
X. Shao , C. Zhu , P. Kumar , Y. Wang , J. Lu , M. Cha , L. Yao , Y. Cao , X. Mao , H. Heinz , N. A. Kotov . Voltage modulated untwist deformations and multispectral optical effects from ion intercalation into chiral ceramic nanoparticles. Adv. Mater., 2023, 35(16): 2370116
CrossRef ADS Google scholar
[18]
W. J. Peng , L. Wang , Y. J. Li , Y. J. Du , Z. X. He , C. Y. Wang , Y. F. Zhao , Z. D. Jiang , Z. Y. Zhou , M. Liu . Voltage manipulation of synthetic antiferromagnetism in CoFeB/Ta/CoFeB heterostructure for spintronic application. Adv. Mater. Interfaces, 2022, 9(14): 2200007
CrossRef ADS Google scholar
[19]
B. Peng , Q. Lu , H. Tang , Y. Zhang , Y. Cheng , R. Qiu , Y. Guo , Z. Zhou , M. Liu . Large in-plane piezo-strain enhanced voltage control of magnetic anisotropy in Si-compatible multiferroic thin films. Mater. Horiz., 2022, 9(12): 3013
CrossRef ADS Google scholar
[20]
B. Prasad , Y. L. Huang , R. V. Chopdekar , Z. Chen , J. Steffes , S. Das , Q. Li , M. Yang , C. C. Lin , T. Gosavi , D. E. Nikonov , Z. Q. Qiu , L. W. Martin , B. D. Huey , I. Young , J. Iniguez , S. Manipatruni , R. Ramesh . Ultralow voltage manipulation of ferromagnetism. Adv. Mater., 2020, 32(28): 2001943
CrossRef ADS Google scholar
[21]
C. Song , B. Cui , F. Li , X. J. Zhou , F. Pan . Recent progress in voltage control of magnetism: Materials, mechanisms, and performance. Prog. Mater. Sci., 2017, 87: 33
CrossRef ADS Google scholar
[22]
J. M. Hu , Z. Li , L. Q. Chen , C. W. Nan . High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun., 2011, 2(1): 553
CrossRef ADS Google scholar
[23]
S. Yang , J. W. Son , T. S. Ju , D. M. Tran , H. S. Han , S. Park , B. H. Park , K. W. Moon , C. Hwang . Magnetic skyrmion transistor gated with voltage-controlled magnetic anisotropy. Adv. Mater., 2023, 35(9): 2208881
CrossRef ADS Google scholar
[24]
H. J. Kim , K. W. Moon , B. X. Tran , S. Yoon , C. Kim , S. Yang , J. H. Ha , K. An , T. S. Ju , J. I. Hong , C. Hwang . Field-free switching of magnetization by tilting the perpendicular magnetic anisotropy of Gd/Co multilayers. Adv. Funct. Mater., 2022, 32(26): 2112561
CrossRef ADS Google scholar
[25]
Z. Tan , J. de Rojas , S. Martins , A. Lopeandia , A. Quintana , M. Cialone , J. Herrero-Martin , J. Meersschaut , A. Vantomme , J. L. Costa-Kramer , J. Sort , E. Menendez . Frequency-dependent stimulated and post-stimulated voltage control of magnetism in transition metal nitrides: Towards brain-inspired magneto-ionics. Mater. Horiz., 2023, 10: 88
CrossRef ADS Google scholar
[26]
M. Ameziane , R. Mansell , V. Havu , P. Rinke , S. van Dijken . Lithium-ion battery technology for voltage control of perpendicular magnetization. Adv. Funct. Mater., 2022, 32(29): 2113118
CrossRef ADS Google scholar
[27]
M. Huang , M. U. Hasan , K. Klyukin , D. Zhang , D. Lyu , P. Gargiani , M. Valvidares , S. Sheffels , A. Churikova , F. Buttner , J. Zehner , L. Caretta , K. Y. Lee , J. Chang , J. P. Wang , K. Leistner , B. Yildiz , G. S. D. Beach . Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol., 2021, 16(9): 981
CrossRef ADS Google scholar
[28]
S. Zhao , Z. Zhou , C. Li , B. Peng , Z. Hu , M. Liu . Low-voltage control of (Co/Pt)x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano, 2018, 12(7): 7167
CrossRef ADS Google scholar
[29]
S. Zhao , L. Wang , Z. Zhou , C. Li , G. Dong , L. Zhang , B. Peng , T. Min , Z. Hu , J. Ma , W. Ren , Z. G. Ye , W. Chen , P. Yu , C. W. Nan , M. Liu . Ionic liquid gating control of spin reorientation transition and switching of perpendicular magnetic anisotropy. Adv. Mater., 2018, 30(30): 1801639
CrossRef ADS Google scholar
[30]
B. Peng , Z. Zhou , T. Nan , G. Dong , M. Feng , Q. Yang , X. Wang , S. Zhao , D. Xian , Z. D. Jiang , W. Ren , Z. G. Ye , N. X. Sun , M. Liu . Deterministic switching of perpendicular magnetic anisotropy by voltage control of spin reorientation transition in (Co/Pt)3/Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures. ACS Nano, 2017, 11(4): 4337
CrossRef ADS Google scholar
[31]
B. Peng , M. Feng , Q. Yang , S. Zhao , Y. Zhang , Z. Zhou , M. Liu . Ferroelastic strain-mediated nonvolatile tuning of perpendicular magnetic anisotropy in (Co/Pt)3/(1 1 1) Pb(Mg1/3Nb2/3)O3-PbTiO3 multiferroic heterostructures. IEEE Magn. Lett., 2017, 8: 1
CrossRef ADS Google scholar
[32]
Q. Yang , Z. Zhou , L. Wang , H. Zhang , Y. Cheng , Z. Hu , B. Peng , M. Liu . Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv. Mater., 2018, 30(22): 1800449
CrossRef ADS Google scholar
[33]
Q. Yang , L. Wang , Z. Zhou , L. Wang , Y. Zhang , S. Zhao , G. Dong , Y. Cheng , T. Min , Z. Hu , W. Chen , K. Xia , M. Liu . Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers. Nat. Commun., 2018, 9(1): 991
CrossRef ADS Google scholar
[34]
X.WangQ.YangL.WangZ.ZhouT.MinM.LiuN.X. Sun, E-field control of the RKKY interaction in FeCoB/Ru/FeCoB/PMN-PT (011) multiferroic heterostructures, Adv. Mater. 30(39), 1803612 (2018)
[35]
Y. F. Zhao , Y. J. Du , L. Wang , K. Chen , Z. L. Luo , W. S. Yan , Q. Li , Z. D. Jiang , M. Liu , Z. Y. Zhou . Sunlight-induced tri-state spin memory in photovoltaic/ferromagnetic heterostructure. Nano Today, 2022, 46: 101605
CrossRef ADS Google scholar
[36]
C. L. Li , Y. J. Li , Y. F. Zhao , Y. J. Du , M. Zhao , W. J. Peng , Y. Y. Wu , M. Liu , Z. Y. Zhou . Sunlight control of ferromagnetic damping in photovoltaic/ferromagnetic heterostructures. Adv. Funct. Mater., 2022, 32(16): 2111652
CrossRef ADS Google scholar
[37]
Y. J. Du , S. P. Wang , L. Wang , S. Y. Jin , Y. F. Zhao , T. Min , Z. D. Jiang , Z. Y. Zhou , M. Liu . Improving solar control of magnetism in ternary organic photovoltaic system with enhanced photo-induced electrons doping. Nano Res., 2022, 15(3): 2626
CrossRef ADS Google scholar
[38]
Y. Zhao , S. Zhao , L. Wang , S. Wang , Y. Du , Y. Zhao , S. Jin , T. Min , B. Tian , Z. Jiang , Z. Zhou , M. Liu . Photovoltaic modulation of ferromagnetism within a FM metal/P–N junction Si heterostructure. Nanoscale, 2021, 13(1): 272
CrossRef ADS Google scholar
[39]
Y. Zhao , S. Zhao , L. Wang , Z. Zhou , J. Liu , T. Min , B. Peng , Z. Hu , S. Jin , M. Liu . Sunlight control of interfacial magnetism for solar driven spintronic applications. Adv. Sci. (Weinh.), 2019, 6(24): 1901994
CrossRef ADS Google scholar
[40]
M. Zhao , L. Wang , Y. Zhao , Y. Du , Z. He , K. Chen , Z. Luo , W. Yan , Q. Li , C. Wang , Z. Jiang , M. Liu , Z. Zhou . Deterministic magnetic switching in perpendicular magnetic trilayers through sunlight-induced photoelectron injection. Small, 2023, 19(28): 2301955
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1377-0 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1377-0.

Acknowledgements

The work was supported by the National Key R&D Program of China (Grant No. 2022YFB3203903), the National Natural Science Foundation of China (Grant Nos. 52172126 and 62001366), and the China Postdoctoral Science Foundation (Grant No. 2022M722509).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7453 KB)

Accesses

Citations

Detail

Sections
Recommended

/