Efficient conversion of acoustic vortex using extremely anisotropic metasurface

Zhanlei Hao, Haojie Chen, Yuhang Yin, Cheng-Wei Qiu, Shan Zhu, Huanyang Chen

PDF(9526 KB)
PDF(9526 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 42202. DOI: 10.1007/s11467-023-1371-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient conversion of acoustic vortex using extremely anisotropic metasurface

Author information +
History +

Abstract

Vortex wave and plane wave, as two most fundamental forms of wave propagation, are widely applied in various research fields. However, there is currently a lack of basic mechanism to enable arbitrary conversion between them. In this paper, we propose a new paradigm of extremely anisotropic acoustic metasurface (AM) to achieve the efficient conversion from 2D vortex waves with arbitrary orbital angular momentum (OAM) to plane waves. The underlying physics of this conversion process is ensured by the symmetry shift of AM medium parameters and the directional compensation of phase. Moreover, this novel phenomenon is further verified by analytical calculations, numerical demonstrations, and acoustic experiments, and the deflection angle and direction of the converted plane waves are qualitatively and quantitatively confirmed by a simple formula. Our work provides new possibilities for arbitrary manipulation of acoustic vortex, and holds potential applications in acoustic communication and OAM-based devices.

Graphical abstract

Keywords

efficient wave conversion / vortex wave / plane wave / orbital angular momentum / acoustic metasurface

Cite this article

Download citation ▾
Zhanlei Hao, Haojie Chen, Yuhang Yin, Cheng-Wei Qiu, Shan Zhu, Huanyang Chen. Efficient conversion of acoustic vortex using extremely anisotropic metasurface. Front. Phys., 2024, 19(4): 42202 https://doi.org/10.1007/s11467-023-1371-6

References

[1]
N. Yu , P. Genevet , M. A. Kats , F. Aieta , J. P. Tetienne , F. Capasso , Z. Gaburro . Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334(6054): 333
CrossRef ADS Google scholar
[2]
B. Assouar , B. Liang , Y. Wu , Y. Li , J. C. Cheng , Y. Jing . Acoustic metasurfaces. Nat. Rev. Mater., 2018, 3(12): 460
CrossRef ADS Google scholar
[3]
C. Shen , Y. Xie , J. Li , S. A. Cummer , Y. Jing . Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces. Appl. Phys. Lett., 2016, 108(22): 223502
CrossRef ADS Google scholar
[4]
Y. Fu , C. Shen , Y. Cao , L. Gao , H. Chen , C. T. Chan , S. A. Cummer , Y. Xu . Reversal of transmission and reflection based on acoustic metagratings with integer parity design. Nat. Commun., 2019, 10(1): 2326
CrossRef ADS Google scholar
[5]
X. D. Fan , L. Zhang . Acoustic orbital angular momentum hall effect and realization using a metasurface. Phys. Rev. Res., 2021, 3(1): 013251
CrossRef ADS Google scholar
[6]
Z. Zou , R. Lirette , L. Zhang . Orbital angular momentum reversal and asymmetry in acoustic vortex beam reflection. Phys. Rev. Lett., 2020, 125(7): 074301
CrossRef ADS Google scholar
[7]
O. Y. Yermakov , A. I. Ovcharenko , A. A. Bogdanov , I. V. Iorsh , K. Y. Bliokh , Y. S. Kivshar . Spin control of light with hyperbolic metasurfaces. Phys. Rev. B, 2016, 94(7): 075446
CrossRef ADS Google scholar
[8]
L. Li , H. Zhao , C. Liu , L. Li , T. J. Cui . Intelligent metasurfaces: Control, communication and computing. eLight, 2022, 2: 7
CrossRef ADS Google scholar
[9]
B. Fang , D. Feng , P. Chen , L. Shi , J. Cai , J. Li , C. Li , Z. Hong , X. Jing . Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502
CrossRef ADS Google scholar
[10]
Z. Hao , Y. Zhuang , Y. Chen , Y. Liu , H. Chen . Effective medium theory of checkboard structures in the long-wavelength limit. Chin. Opt. Lett., 2020, 18(7): 072401
CrossRef ADS Google scholar
[11]
X. Jiang , Y. Li , B. Liang , J. Cheng , L. Zhang . Convert acoustic resonances to orbital angular momentum. Phys. Rev. Lett., 2016, 117(3): 034301
CrossRef ADS Google scholar
[12]
Y. Fu , C. Shen , X. Zhu , J. Li , Y. Liu , S. A. Cummer , Y. Xu . Sound vortex diffraction via topological charge in phase gradient metagratings. Sci. Adv., 2020, 6(40): eaba9876
CrossRef ADS Google scholar
[13]
Y. Fu , Y. Tian , X. Li , S. Yang , Y. Liu , Y. Xu , M. Lu . Asymmetric generation of acoustic vortex using dual-layer metasurfaces. Phys. Rev. Lett., 2022, 128(10): 104501
CrossRef ADS Google scholar
[14]
S.GuoZ.YaP.WuM.Wan, A review on acoustic vortices: Generation, characterization, applications and perspectives, J. Appl. Phys. 132(21), 210701 (2022)
[15]
K. Y. Bliokh , F. Nori . Spin and orbital angular momenta of acoustic beams. Phys. Rev. B, 2019, 99(17): 174310
CrossRef ADS Google scholar
[16]
Y. Xie , Y. Fu , Z. Jia , J. Li , C. Shen , Y. Xu , H. Chen , S. A. Cummer . Acoustic imaging with metamaterial Luneburg lenses. Sci. Rep., 2018, 8(1): 16188
CrossRef ADS Google scholar
[17]
C. Hu , S. Xue , Y. Yin , Z. Hao , Y. Zhou , H. Chen . Acoustic super-resolution imaging based on solid immersion 3D Maxwell’s fish-eye lens. Appl. Phys. Lett., 2022, 120(19): 192202
CrossRef ADS Google scholar
[18]
Z. Hao , Y. Zhou , B. Wu , Y. Liu , H. Chen . Improving resolution of superlens based on solid immersion mechanism. Chin. Phys. B, 2023, 32(6): 064211
CrossRef ADS Google scholar
[19]
R. D. Muelas-Hurtado , K. Volke-Sepúlveda , J. L. Ealo , F. Nori , M. A. Alonso , K. Y. Bliokh , E. Brasselet . Observation of polarization singularities and topological textures in sound waves. Phys. Rev. Lett., 2022, 129(20): 204301
CrossRef ADS Google scholar
[20]
H. Zhang , Y. Sun , J. Huang , B. Wu , Z. Yang , K. Y. Bliokh , Z. Ruan . Topologically crafted spatiotemporal vortices in acoustics. Nat. Commun., 2023, 14(1): 6238
CrossRef ADS Google scholar
[21]
M. Liu , W. Zhu , P. Huo , L. Feng , M. Song , C. Zhang , L. Chen , H. J. Lezec , Y. Lu , A. Agrawal , T. Xu . Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Sci. Appl., 2021, 10(1): 107
CrossRef ADS Google scholar
[22]
C. W. Qiu , T. Zhang , G. Hu , Y. Kivshar . Quo vadis, metasurfaces. Nano Lett., 2021, 21(13): 5461
CrossRef ADS Google scholar
[23]
Y. Y. Fu , J. Q. Tao , A. L. Song , Y. W. Liu , Y. D. Xu . Controllably asymmetric beam splitting via gap-induced diffraction channel transition in dual-layer binary metagratings. Front. Phys., 2020, 15(5): 52502
CrossRef ADS Google scholar
[24]
Z. Li , G. Cao , C. Li , S. Dong , Y. Deng , X. Liu , J. S. Ho , C. W. Qiu . Non-Hermitian electromagnetic metasurfaces at exceptional points. Prog. Electromagn. Res., 2021, 171: 1
CrossRef ADS Google scholar
[25]
L. Zhang , Q. Niu . Angular momentum of phonons and the Einstein‒de Haas effect. Phys. Rev. Lett., 2014, 112(8): 085503
CrossRef ADS Google scholar
[26]
Y. Cao , B. Yu , Y. Fu , L. Gao , Y. Xu . Phase-gradient metasurfaces based on local Fabry–Pérot resonances. Chin. Phys. Lett., 2020, 37(9): 097801
CrossRef ADS Google scholar
[27]
X. Jiang , C. Shi , Y. Wang , J. Smalley , J. Cheng , X. Zhang . Nonresonant metasurface for fast decoding in acoustic communications. Phys. Rev. Appl., 2020, 13(1): 014014
CrossRef ADS Google scholar
[28]
H. Song , N. Wang , K. Yu , J. Pei , G. P. Wang . Disorder-immune metasurfaces with constituents exhibiting the anapole mode. New J. Phys., 2020, 22(11): 113011
CrossRef ADS Google scholar
[29]
Y. Li , S. Qi , M. B. Assouar . Theory of metascreen-based acoustic passive phased array. New J. Phys., 2016, 18(4): 043024
CrossRef ADS Google scholar
[30]
S. Chen , Y. Fan , F. Yang , K. Sun , Q. Fu , J. Zheng , F. Zhang . Coiling-up space metasurface for high-efficient and wide-angle acoustic wavefront steering. Front. Mater., 2021, 8: 790987
CrossRef ADS Google scholar
[31]
Y. Cao , Y. Fu , Q. Zhou , X. Ou , L. Gao , H. Chen , Y. Xu . Mechanism behind angularly asymmetric diffraction in phase-gradient metasurfaces. Phys. Rev. Appl., 2019, 12(2): 024006
CrossRef ADS Google scholar
[32]
Z. Hu , N. He , Y. Sun , Y. Jin , S. He . Wideband high-reflection chiral dielectrical metasurface. Prog. Electromagn. Res., 2021, 172: 51
CrossRef ADS Google scholar
[33]
Y. Mazor , A. Alù . Routing optical spin and pseudospin with metasurfaces. Phys. Rev. Appl., 2020, 14(1): 014029
CrossRef ADS Google scholar
[34]
S. J. Li , Z. Y. Li , G. S. Huang , X. B. Liu , R. Q. Li , X. Y. Cao . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
CrossRef ADS Google scholar
[35]
Y. Xu , Y. Fu , H. Chen . Planar Gradient Metamaterials. Nat. Rev. Mater., 2016, 1(12): 16067
CrossRef ADS Google scholar
[36]
J. Li , A. Díaz-Rubio , C. Shen , Z. Jia , S. Tretyakov , S. Cummer . Highly efficient generation of angular momentum with cylindrical bianisotropic metasurfaces. Phys. Rev. Appl., 2019, 11(2): 024016
CrossRef ADS Google scholar
[37]
Q. Ba , Y. Zhou , J. Li , W. Xiao , L. Ye , Y. Liu , J. Chen , H. Chen . Conformal optical black hole for cavity. eLight, 2022, 2: 19
CrossRef ADS Google scholar
[38]
X. Meng , X. Chen , L. Yang , W. Xue , A. Zhang , W. E. I. Sha , Q. Cheng . Launcher of high-order Bessel vortex beam carrying orbital angular momentum by designing anisotropic holographic metasurface. Appl. Phys. Lett., 2020, 117(24): 243503
CrossRef ADS Google scholar
[39]
Y. Shen , X. Wang , Z. Xie , C. Min , X. Fu , Q. Liu , M. Gong , X. Yuan . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Sci. Appl., 2019, 8(1): 901
CrossRef ADS Google scholar
[40]
H. Wang , H. Wang , Q. Ruan , J. Y. E. Chan , W. Zhang , H. Liu , S. D. Rezaei , J. Trisno , C. W. Qiu , M. Gu , J. K. W. Yang . Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol., 2023, 18(3): 2643
CrossRef ADS Google scholar
[41]
X. D. Fan , Z. Zou , L. Zhang . Acoustic vortices in inhomogeneous media. Phys. Rev. Res., 2019, 1(3): 032014
CrossRef ADS Google scholar
[42]
A. Díaz-Rubio , V. S. Asadchy , A. Elsakka , S. A. Tretyakov . From the generalized reflection law to the realization of perfect anomalous reflectors. Sci. Adv., 2017, 3(8): e1602714
CrossRef ADS Google scholar
[43]
Z. Hao , H. Chen , Y. Yin , C. Qiu , S. Zhu , H. Chen . Asymmetric conversion of arbitrary vortex fields via acoustic metasurface. Appl. Phys. Lett., 2023, 123(20): 201702
CrossRef ADS Google scholar
[44]
Z. Jin , D. Janoschka , J. Deng , L. Ge , P. Dreher , B. Frank , G. Hu , J. Ni , Y. Yang , J. Li , C. Yu , D. Lei , G. Li , S. Xiao , S. Mei , H. Giessen , F. M. zu Heringdorf , C. W. Qiu . Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 2021, 1: 5
CrossRef ADS Google scholar
[45]
K. Y. Bliokh , E. Karimi , M. J. Padgett , M. A. Alonso , M. R. Dennis . . Roadmap on structured waves. J. Opt., 2023, 25(10): 103001
CrossRef ADS Google scholar
[46]
X. Jiang , N. Wang , C. Zhang , X. Fang , S. Li , X. Sun , Y. Li , D. Ta , W. Wang . Acoustic orbital angular momentum prism for efficient vortex perception. Appl. Phys. Lett., 2021, 118(7): 071901
CrossRef ADS Google scholar
[47]
Y. Chen , G. Hu . Broadband and high-transmission metasurface for converting underwater cylindrical waves to plane waves. Phys. Rev. Appl., 2019, 12(4): 044046
CrossRef ADS Google scholar
[48]
W. X. Jiang , T. J. Cui , H. F. Ma , X. Y. Zhou , Q. Cheng . Cylindrical-to-plane-wave conversion via embedded optical transformation. Appl. Phys. Lett., 2008, 92(26): 261903
CrossRef ADS Google scholar
[49]
Y. Guo , G. Zhu , W. Bian , B. Dong , Y. Fang . Orbital angular momentum dichroism caused by the interaction of electric and magnetic dipole moments and the geometrical asymmetry of chiral metal nanoparticles. Phys. Rev. A, 2020, 102(3): 033525
CrossRef ADS Google scholar
[50]
F.Ding, A review of multifunctional optical gap-surface plasmon metasurfaces, Prog. Electromagn. Res. 174, 55 (2022)
[51]
M. Mazanov , O. Yermakov . Vortex dynamics and structured darkness of Laguerre‒Gaussian beams transmitted through Q-plates under weak axial-asymmetric incidence. J. Lightwave Technol., 2023, 41(7): 2232
CrossRef ADS Google scholar
[52]
M. Kang , Y. Ra’di , D. Farfan , A. Alù . Efficient focusing with large numerical aperture using a hybrid metalens. Phys. Rev. Appl., 2020, 13(4): 044016
CrossRef ADS Google scholar
[53]
Y. Cao , Y. Fu , J. H. Jiang , L. Gao , Y. Xu . Scattering of light with orbital angular momentum from a metallic meta-cylinder with engineered topological charge. ACS Photonics, 2021, 8(7): 2027
CrossRef ADS Google scholar
[54]
C. Pfeiffer , A. Grbic . Metamaterial Huygens’ surfaces: Tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 2013, 110(19): 197401
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1371-6 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1371-6.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFA0710100), the National Natural Science Foundation of China (Grant Nos. 92050102 and 12374410), and the Fundamental Research Funds for the Central Universities (Grant Nos. 20720220033 and 20720230102), and China Scholarship Council (No. 202106310002).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(9526 KB)

Accesses

Citations

Detail

Sections
Recommended

/