Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices

Xiuye Liu, Jianhua Zeng

PDF(5206 KB)
PDF(5206 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 42201. DOI: 10.1007/s11467-023-1370-7
RESEARCH ARTICLE

Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices

Author information +
History +

Abstract

Periodic structures structured as photonic crystals and optical lattices are fascinating for nonlinear waves engineering in the optics and ultracold atoms communities. Moiré photonic and optical lattices — two-dimensional twisted patterns lie somewhere in between perfect periodic structures and aperiodic ones — are a new emerging investigative tool for studying nonlinear localized waves of diverse types. Herein, a theory of two-dimensional spatial localization in nonlinear periodic systems with fractional-order diffraction (linear nonlocality) and moiré optical lattices is investigated. Specifically, the flat-band feature is well preserved in shallow moiré optical lattices which, interact with the defocusing nonlinearity of the media, can support fundamental gap solitons, bound states composed of several fundamental solitons, and topological states (gap vortices) with vortex charge s = 1 and 2, all populated inside the finite gaps of the linear Bloch-wave spectrum. Employing the linear-stability analysis and direct perturbed simulations, the stability and instability properties of all the localized gap modes are surveyed, highlighting a wide stability region within the first gap and a limited one (to the central part) for the third gap. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems with shallow moiré patterns that exhibit extremely flat bands.

Graphical abstract

Keywords

moiré optical lattices / gap solitons and vortices / ultracold atoms / Gross−Pitaevskii/nonlinear fractional Schrödinger equation / nonlinear fractional systems

Cite this article

Download citation ▾
Xiuye Liu, Jianhua Zeng. Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices. Front. Phys., 2024, 19(4): 42201 https://doi.org/10.1007/s11467-023-1370-7

References

[1]
Y.S. KivsharG.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego, 2003
[2]
O. Morsch , M. Oberthaler . Dynamics of Bose‒Einstein condensates in optical lattices. Rev. Mod. Phys., 2006, 78(1): 179
CrossRef ADS Google scholar
[3]
Y. V. Kartashov , B. A. Malomed , L. Torner . Solitons in nonlinear lattices. Rev. Mod. Phys., 2011, 83(1): 247
CrossRef ADS Google scholar
[4]
I. L. Garanovich , S. Longhi , A. A. Sukhorukov , Y. S. Kivshar . Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep., 2012, 518(1‒2): 1
CrossRef ADS Google scholar
[5]
V. V. Konotop , J. Yang , D. A. Zezyulin . Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 2016, 88(3): 035002
CrossRef ADS Google scholar
[6]
Y. V. Kartashov , G. E. Astrakharchik , B. A. Malomed , L. Torner . Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys., 2019, 1(3): 185
CrossRef ADS Google scholar
[7]
B. J. Eggleton , R. E. Slusher , C. M. de Sterke , P. A. Krug , J. E. Sipe . Bragg grating solitons. Phys. Rev. Lett., 1996, 76(10): 1627
CrossRef ADS Google scholar
[8]
D. Mandelik , R. Morandotti , J. S. Aitchison , Y. Silberberg . Gap solitons in waveguide arrays. Phys. Rev. Lett., 2004, 92(9): 093904
CrossRef ADS Google scholar
[9]
O. Peleg , G. Bartal , B. Freedman , O. Manela , M. Segev , D. N. Christodoulides . Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 2007, 98(10): 103901
CrossRef ADS Google scholar
[10]
B. Eiermann , T. Anker , M. Albiez , M. Taglieber , P. Treutlein , K. P. Marzlin , M. K. Oberthaler . Bright Bose‒Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett., 2004, 92(23): 230401
CrossRef ADS Google scholar
[11]
Th. Anker , M. Albiez , R. Gati , S. Hunsmann , B. Eiermann , A. Trombettoni , M. K. Oberthaler . Nonlinear self-trapping of matter waves in periodic potentials. Phys. Rev. Lett., 2005, 94(2): 020403
CrossRef ADS Google scholar
[12]
F. H. Bennet , T. J. Alexander , F. Haslinger , A. Mitchell , D. N. Neshev , Y. S. Kivshar . Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays. Phys. Rev. Lett., 2011, 106(9): 093901
CrossRef ADS Google scholar
[13]
C. Bersch , G. Onishchukov , U. Peschel . Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices. Phys. Rev. Lett., 2012, 109(9): 093903
CrossRef ADS Google scholar
[14]
L. Zeng , J. Zeng . Gap-type dark localized modes in a Bose‒Einstein condensate with optical lattices. Adv. Photonics, 2019, 1(4): 046004
CrossRef ADS Google scholar
[15]
J. Shi , J. Zeng . Self-trapped spatially localized states in combined linear-nonlinear periodic potentials. Front. Phys., 2020, 15(1): 12602
CrossRef ADS Google scholar
[16]
J. Li , J. Zeng . Dark matter-wave gap solitons in dense ultra-cold atoms trapped by a one-dimensional optical lattice. Phys. Rev. A, 2021, 103(1): 013320
CrossRef ADS Google scholar
[17]
J. Chen , J. Zeng . Dark matter-wave gap solitons of Bose‒Einstein condensates trapped in optical lattices with competing cubic‒quintic nonlinearities. Chaos Solitons Fractals, 2021, 150: 111149
CrossRef ADS Google scholar
[18]
Z. Chen , J. Zeng . Localized gap modes of coherently trapped atoms in an optical lattice. Opt. Express, 2021, 29(3): 3011
CrossRef ADS Google scholar
[19]
Z. Chen , J. Zeng . Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices. Commun. Nonlinear Sci. Numer. Simul., 2021, 102: 105911
CrossRef ADS Google scholar
[20]
Z. Chen , J. Zeng . Nonlinear localized modes in one-dimensional nanoscale dark-state optical lattices. Nanophotonics, 2022, 11(15): 3465
CrossRef ADS Google scholar
[21]
J. Li , Y. Zhang , J. Zeng . Matter-wave gap solitons and vortices in three-dimensional parity‒time-symmetric optical lattices. iScience, 2022, 25(4): 104026
CrossRef ADS Google scholar
[22]
J. Li , Y. Zhang , J. Zeng . 3D nonlinear localized gap modes in Bose‒Einstein condensates trapped by optical lattices and space-periodic nonlinear potentials. Adv. Photon. Res., 2022, 3(7): 2100288
CrossRef ADS Google scholar
[23]
J. Qin , L. Zhou . Supersolid gap soliton in a Bose‒Einstein condensate and optical ring cavity coupling system. Phys. Rev. E, 2022, 105(5): 054214
CrossRef ADS Google scholar
[24]
J. Yang , Y. Zhang . Spin‒orbit-coupled spinor gap solitons in Bose‒Einstein condensates. Phys. Rev. A, 2023, 107(2): 023316
CrossRef ADS Google scholar
[25]
Z. Chen , Z. Wu , J. Zeng . Light gap bullets in defocusing media with optical lattices. Chaos Solitons Fractals, 2023, 174: 113785
CrossRef ADS Google scholar
[26]
C. Huang , L. Dong . Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice. Opt. Lett., 2016, 41(24): 5636
CrossRef ADS Google scholar
[27]
C. Huang , C. Li , H. Deng , L. Dong . Gap Solitons in fractional dimensions with a quasi-periodic lattice. Ann. Phys., 2019, 531(9): 1900056
CrossRef ADS Google scholar
[28]
J. Xie , X. Zhu , Y. He . Vector solitons in nonlinear fractional Schrödinger equations with parity‒time-symmetric optical lattices. Nonlinear Dyn., 2019, 97(2): 1287
CrossRef ADS Google scholar
[29]
L. Zeng , J. Zeng . One-dimensional gap solitons in quintic and cubic‒quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn., 2019, 98: 985
CrossRef ADS Google scholar
[30]
L. Zeng , J. Zeng . Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and non-linearities. Commun. Phys., 2020, 3(1): 26
CrossRef ADS Google scholar
[31]
X. Zhu , F. Yang , S. Cao , J. Xie , Y. He . Multipole gap solitons in fractional Schrödinger equation with parity‒time-symmetric optical lattices. Opt. Express, 2020, 28(2): 1631
CrossRef ADS Google scholar
[32]
L. Zeng , M. R. Belić , D. Mihalache , J. Shi , J. Li , S. Li , X. Lu , Y. Cai , J. Li . Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn., 2022, 108(2): 1671
CrossRef ADS Google scholar
[33]
Y. Y. Bao , S. R. Li , Y. H. Liu , T. F. Xu . Gap solitons and non-linear Bloch waves in fractional quantum coupler with periodic potential. Chaos Solitons Fractals, 2022, 156: 111853
CrossRef ADS Google scholar
[34]
X. Liu , B. A. Malomed , J. Zeng . Localized modes in nonlinear fractional systems with deep lattices. Adv. Theory Simul., 2022, 5(4): 2100482
CrossRef ADS Google scholar
[35]
L. Dong , C. Huang . Double-hump solitons in fractional dimensions with a PT-symmetric potential. Opt. Express, 2018, 26(8): 10509
CrossRef ADS Google scholar
[36]
C. Huang , L. Dong . Beam propagation management in a fractional Schrödinger equation. Sci. Rep., 2017, 7(1): 5442
CrossRef ADS Google scholar
[37]
N.Laskin, Fractional Quantum Mechanics, World Scientific, 2018
[38]
B. A. Malomed . Optical solitons and vortices in fractional media: A mini-review of recent results. Photonics, 2021, 8(9): 353
CrossRef ADS Google scholar
[39]
S. Liu , Y. Zhang , B. A. Malomed , E. Karimi . Experimental realizations of the fractional Schrödinger equation in the temporal domain. Nat. Commun., 2023, 14(1): 222
CrossRef ADS Google scholar
[40]
Y. Cao , V. Fatemi , S. Fang , K. Watanabe , T. Taniguchi , E. Kaxiras , P. Jarillo-Herrero . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
CrossRef ADS Google scholar
[41]
Y. Cao , V. Fatemi , A. Demir , S. Fang , S. L. Tomarken , J. Y. Luo , J. D. Sanchez-Yamagishi , K. Watanabe , T. Taniguchi , E. Kaxiras , R. C. Ashoori , P. Jarillo-Herrero . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
CrossRef ADS Google scholar
[42]
S. Carr , D. Massatt , S. Fang , P. Cazeaux , M. Luskin , E. Kaxiras . Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B, 2017, 95(7): 075420
CrossRef ADS Google scholar
[43]
C. Huang , F. Ye , X. Chen , Y. V. Kartashov , V. V. Konotop , L. Torner . Localization‒delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci. Rep., 2016, 6(1): 32546
CrossRef ADS Google scholar
[44]
P. Wang , Y. Zheng , X. Chen , C. Huang , Y. V. Kartashov , L. Torner , V. V. Konotop , F. Ye . Localization and delocalization of light in photonic moiré lattices. Nature, 2020, 577(7788): 42
CrossRef ADS Google scholar
[45]
Q. Fu , P. Wang , C. Huang , Y. V. Kartashov , L. Torner , V. V. Konotop , F. Ye . Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics, 2020, 14(11): 663
CrossRef ADS Google scholar
[46]
X. R. Mao , Z. K. Shao , H. Y. Luan , S. L. Wang , R. M. Ma . Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol., 2021, 16(10): 1099
CrossRef ADS Google scholar
[47]
Y. V. Kartashov , F. Ye , V. V. Konotop , L. Torner . Multi-frequency solitons in commensurate-incommensurate photonic moiré lattices. Phys. Rev. Lett., 2021, 127(16): 163902
CrossRef ADS Google scholar
[48]
Y. V. Kartashov . Light bullets in moiré lattices. Opt. Lett., 2022, 47(17): 4528
CrossRef ADS Google scholar
[49]
S. K. Ivanov , V. V. Konotop , Y. V. Kartashov , L. Torner . Vortex solitons in moiré optical lattices. Opt. Lett., 2023, 48(14): 3797
CrossRef ADS Google scholar
[50]
A. A. Arkhipova , Y. V. Kartashov , S. K. Ivanov , S. A. Zhuravitskii , N. N. Skryabin , I. V. Dyakonov , A. A. Kalinkin , S. P. Kulik , V. O. Kompanets , S. V. Chekalin , F. Ye , V. V. Konotop , L. Torner , V. N. Zadkov . Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys. Rev. Lett., 2023, 130(8): 083801
CrossRef ADS Google scholar
[51]
S. S. Sunku , G. X. Ni , B. Y. Jiang , H. Yoo , A. Sternbach , A. S. McLeod , T. Stauber , L. Xiong , T. Taniguchi , K. Watanabe , P. Kim , M. M. Fogler , D. N. Basov . Photonic crystals for nano-light in moiré graphene superlattices. Science, 2018, 362(6419): 1153
CrossRef ADS Google scholar
[52]
W. J. M. Kort-Kamp , F. J. Culchac , R. B. Capaz , F. A. Pinheiro . Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 2018, 98(19): 195431
CrossRef ADS Google scholar
[53]
G. Hu , Q. Ou , G. Si , Y. Wu , J. Wu , Z. Dai , A. Krasnok , Y. Mazor , Q. Zhang , Q. Bao , C. W. Qiu , A. Alù . Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582(7811): 209
CrossRef ADS Google scholar
[54]
M. Chen , X. Lin , T. H. Dinh , Z. Zheng , J. Shen , Q. Ma , H. Chen , P. Jarillo-Herrero , S. Dai . Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 2020, 19(12): 1307
CrossRef ADS Google scholar
[55]
A. González-Tudela , J. I. Cirac . Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A, 2019, 100(5): 053604
CrossRef ADS Google scholar
[56]
T. Salamon , A. Celi , R. W. Chhajlany , I. Frérot , M. Lewenstein , L. Tarruell , D. Rakshit . Simulating twistronics without a twist. Phys. Rev. Lett., 2020, 125(3): 030504
CrossRef ADS Google scholar
[57]
X. W. Luo , C. Zhang . Spin-twisted optical lattices: Tunable flat bands and Larkin‒Ovchinnikov superfluids. Phys. Rev. Lett., 2021, 126(10): 103201
CrossRef ADS Google scholar
[58]
T. Ning , Y. Ren , Y. Huo , Y. Cai . Efficient high harmonic generation in nonlinear photonic moiré superlattice. Front. Phys., 2023, 18(5): 52305
CrossRef ADS Google scholar
[59]
Z. Ma , W. J. Chen , Y. Chen , J. H. Gao , X. C. Xie . Flat band localization due to self-localized orbital. Front. Phys., 2023, 18(6): 63302
CrossRef ADS Google scholar
[60]
Z. Chen , X. Liu , J. Zeng . Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 2022, 17(4): 42508
CrossRef ADS Google scholar
[61]
Z. Meng , L. Wang , W. Han , F. Liu , K. Wen , C. Gao , P. Wang , C. Chin , J. Zhang . Atomic Bose‒Einstein condensate in twisted-bilayer optical lattices. Nature, 2023, 615(7951): 231
CrossRef ADS Google scholar
[62]
C. Huang , L. Dong , H. Deng , X. Zhang , P. Gao . Fundamental and vortex gap solitons in quasiperiodic photonic lattices. Opt. Lett., 2021, 46(22): 5691
CrossRef ADS Google scholar
[63]
X. Liu , J. Zeng . Matter-wave gap solitons and vortices of dense Bose‒Einstein condensates in moiré optical lattices. Chaos Solitons Fractals, 2023, 174: 113869
CrossRef ADS Google scholar
[64]
X. Liu , J. Zeng . Gap solitons in parity‒time symmetric moiré optical lattices. Photon. Res., 2023, 11(2): 196
CrossRef ADS Google scholar
[65]
J.Yang, Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM: Philadelphia, 2010
[66]
M. Cai , C. P. Li . On Riesz derivative. Fract. Calc. Appl. Anal., 2019, 22(2): 287
CrossRef ADS Google scholar
[67]
S. Duo , Y. Zhang . Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng., 2019, 355: 639
CrossRef ADS Google scholar
[68]
N. Laskin . Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 2000, 268(4−6): 298
CrossRef ADS Google scholar
[69]
N. Laskin . Fractional quantum mechanics. Phys. Rev. E, 2000, (3): 3135
CrossRef ADS Google scholar
[70]
N. Laskin . Fractional Schrödinger equation. Phys. Rev. E, 2002, 66(5): 056108
CrossRef ADS Google scholar
[71]
L. Zhang , C. Li , H. Zhong , C. Xu , D. Lei , Y. Li , D. Fan . Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: From linear to nonlinear regimes. Opt. Express, 2016, 24(13): 14406
CrossRef ADS Google scholar
[72]
L. Zhang , Z. He , C. Conti , Z. Wang , Y. Hu , D. Lei , Y. Li , D. Fan . Modulational instability in fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul., 2017, 48: 531
CrossRef ADS Google scholar
[73]
M. Vakhitov , A. Kolokolov . Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron., 1973, 16(7): 783
CrossRef ADS Google scholar
[74]
A. Ferrando , M. Zacarés , M. A. García-March . Vorticity cutoff in nonlinear photonic crystals. Phys. Rev. Lett., 2005, 95(4): 043901
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 12074423), Young Scholar of Chinese Academy of Sciences in Western China (No. XAB2021YN18), and China Postdoctoral Science Foundation (No. 2023M733722).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5206 KB)

Accesses

Citations

Detail

Sections
Recommended

/