Room-temperature ferroelectricity in van der Waals SnP2S6

Chaowei He, Jiantian Zhang, Li Gong, Peng Yu

PDF(7343 KB)
PDF(7343 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43202. DOI: 10.1007/s11467-023-1369-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Room-temperature ferroelectricity in van der Waals SnP2S6

Author information +
History +

Abstract

Two-dimensional (2D) ferroelectric materials, which possess electrically switchable spontaneous polarization and can be easily integrated with semiconductor technologies, is of utmost importance in the advancement of high-integration low-power nanoelectronics. Despite the experimental discovery of certain 2D ferroelectric materials such as CuInP2S6 and In2Se3, achieving stable ferroelectricity at room temperature in these materials continues to present a significant challenge. Herein, stable ferroelectric order at room temperature in the 2D limit is demonstrated in van der Waals SnP2S6 atom layers, which can be fabricated via mechanical exfoliation of bulk SnP2S6 crystals. Switchable polarization is observed in thin SnP2S6 of ~7 nm. Importantly, a van der Waals ferroelectric field-effect transistor (Fe-FET) with ferroelectric SnP2S6 as top-gate insulator and p-type WTe0.6Se1.4 as the channel was designed and fabricated successfully, which exhibits a clear clockwise hysteresis loop in transfer characteristics, demonstrating ferroelectric properties of SnP2S6 atomic layers. In addition, a multilayer graphene/SnP2S6/multilayer graphene van der Waals vertical heterostructure phototransistor was also fabricated successfully, exhibiting improved optoelectronic performances with a responsivity (R) of 2.9 A/W and a detectivity (D) of 1.4 × 1012 Jones. Our results show that SnP2S6 is a promising 2D ferroelectric material for ferroelectric-integrated low-power 2D devices.

Graphical abstract

Keywords

two-dimensional ferroelectric materials / ferroelectric field-effect transistors / photodetectors

Cite this article

Download citation ▾
Chaowei He, Jiantian Zhang, Li Gong, Peng Yu. Room-temperature ferroelectricity in van der Waals SnP2S6. Front. Phys., 2024, 19(4): 43202 https://doi.org/10.1007/s11467-023-1369-0

References

[1]
G. D. Wenbiao Niu , Z. Jia , X. Q. Ma , J. Y. Zhao , K. Zhou , S. T. Han , C. C. Kuo , Y. Zhou . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
CrossRef ADS Google scholar
[2]
T. Sano , Y. Nishio , Y. Hamada , H. Takahashi , T. Usuki , K. Shibata . Design of conjugated molecular materials for optoelectronics. J. Mater. Chem., 2000, 10(1): 157
CrossRef ADS Google scholar
[3]
I. B. Bersuker , I. Y. Ogurtsov , Y. V. Shaparev . Temperature dependence of the mean dipole moment of symmetrical molecular systems. Theor. Exp. Chem., 1975, 9(4): 351
CrossRef ADS Google scholar
[4]
P. Li , Z. M. Gao , X. S. Huang , L. F. Wang , W. F. Zhang , H. Z. Guo . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13: 136803
CrossRef ADS Google scholar
[5]
J. M. D. Coey , M. Venkatesan , P. Stamenov , C. B. Fitzgerald , L. S. Dorneles . Magnetism in hafnium dioxide. Phys. Rev. B, 2005, 72(2): 024450
CrossRef ADS Google scholar
[6]
D. E. Aspnes . Electric field effects on the dielectric constant of solids. Phys. Rev., 1967, 153(3): 972
CrossRef ADS Google scholar
[7]
D. G. Schlom , L. Q. Chen , C. B. Eom , K. M. Rabe , S. K. Streiffer , J. M. Triscone . Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res., 2007, 37(1): 589
CrossRef ADS Google scholar
[8]
M. H. Wu . Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano, 2021, 15(6): 9229
CrossRef ADS Google scholar
[9]
Y. Liu , Y. Huang , X. F. Duan . Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323
CrossRef ADS Google scholar
[10]
M. H. Wu , J. D. Burton , E. Y. Tsymbal , X. C. Zeng , P. Jena . Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B, 2013, 87(8): 081406
CrossRef ADS Google scholar
[11]
S. G. Yuan , X. Luo , H. L. Chan , C. C. Xiao , Y. W. Dai , M. H. Xie , J. H. Hao . Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
CrossRef ADS Google scholar
[12]
S. N. Shirodkar , U. V. Waghmare . Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
CrossRef ADS Google scholar
[13]
C. X. Zheng , L. Yu , L. Zhu , J. L. Collins , D. Kim , Y. D. Lou , C. Xu , M. Li , Z. Wei , Y. P. Zhang , M. T. Edmonds , S. Q. Li , J. Seidel , Y. Zhu , J. Z. Liu , W. X. Tang , M. S. Fuhrer . Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv., 2018, 4(7): eaar7720
CrossRef ADS Google scholar
[14]
W. J. Ding , J. B. Zhu , Z. Wang , Y. F. Gao , D. Xiao , Y. Gu , Z. Y. Zhang , W. G. Zhu . Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2‒VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
CrossRef ADS Google scholar
[15]
F. C. Liu , L. You , K. L. Seyler , X. B. Li , P. Yu , J. H. Lin , X. W. Wang , J. D. Zhou , H. Wang , H. Y. He , S. T. Pantelides , W. Zhou , P. Sharma , X. D. Xu , P. M. Ajayan , J. L. Wang , Z. Liu . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7: 12357
CrossRef ADS Google scholar
[16]
A. Belianinov , Q. He , A. Dziaugys , P. Maksymovych , E. Eliseev , A. Borisevich , A. Morozovska , J. Banys , Y. Vysochanskii , S. V. Kalinin . CuInP2S6 room temperature layered ferroelectric. Nano Lett., 2015, 15(6): 3808
CrossRef ADS Google scholar
[17]
P. Z. Hanakata , A. Carvalho , D. K. Campbell , H. S. Park . Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B, 2016, 94(3): 035304
CrossRef ADS Google scholar
[18]
R. X. Fei , W. Kang , L. Yang . Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601
CrossRef ADS Google scholar
[19]
F. Alsubaie , M. Muraykhan , L. Zhang , D. C. Qi , T. Liao , L. Z. Kou , A. J. Du , C. Tang . Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material. Front. Phys., 2024, 19(1): 13201
CrossRef ADS Google scholar
[20]
L. Y. Shuang Zhou , H. Zhou , Y. Pu , Z. Gui , J. Wang . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
CrossRef ADS Google scholar
[21]
L. Niu , F. C. Liu , Q. S. Zeng , X. Y. Zhu , Y. L. Wang , P. Yu , J. Shi , J. H. Lin , J. D. Zhou , Q. D. Fu , W. Zhou , T. Yu , X. F. Liu , Z. Liu . Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy, 2019, 58: 596
CrossRef ADS Google scholar
[22]
J. Wang , C. L. Liu , L. B. Zhang , J. Chen , J. Chen , F. L. Yu , Z. Y. Zhao , W. W. Tang , X. Li , S. Zhang , G. H. Li , L. Wang , Y. Cheng , X. S. Chen . Selective enhancement of photoresponse with ferroelectric-controlled BP/In2Se3 vdW heterojunction. Adv. Sci. (Weinh.), 2023, 10(11): 2205813
CrossRef ADS Google scholar
[23]
Y. Cai , J. Yang , F. Wang , S. Li , Y. Wang , X. Zhan , F. Wang , R. Cheng , Z. Wang , J. He . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
CrossRef ADS Google scholar
[24]
Q. Liang , Y. Zheng , C. Du , Y. Luo , J. Zhao , H. Ren , J. Xu , Q. Yan . Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell. ACS Nano, 2018, 12(12): 12902
CrossRef ADS Google scholar
[25]
Y. Zhang , F. K. Wang , X. Feng , Z. D. Sun , J. W. Su , M. Zhao , S. Z. Wang , X. Z. Hu , T. Y. Zhai . Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response. Nano Res., 2022, 15(3): 2391
CrossRef ADS Google scholar
[26]
Z. Wang , R. D. Willett , R. A. Laitinen , D. A. Cleary . Synthesis and crystal structure of SnP2S6. Chem. Mater., 1995, 7(5): 856
CrossRef ADS Google scholar
[27]
I. P. Studenyak , V. V. Mitrovcij , G. S. Kovacs , O. A. Mykajlo , M. I. Gurzan , Y. M. Vysochanskii . Temperature variation of optical absorption edge in Sn2P2S6 and SnP2S6 crystals. Ferroelectrics, 2001, 254(1): 295
CrossRef ADS Google scholar
[28]
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[29]
Y. Zhang , F. K. Wang , X. Feng , Z. Zhang , K. L. Liu , F. F. Xia , W. X. Liang , X. Z. Hu , Y. Ma , H. Q. Li , G. C. Xing , T. Y. Zhai . Self-trapped excitons in 2D SnP2S6 crystal with intrinsic structural distortion. Adv. Funct. Mater., 2022, 32(38): 2205757
CrossRef ADS Google scholar
[30]
J. Y. He , S. H. Lee , F. Naccarato , G. Brunin , R. Zu , Y. X. Wang , L. X. Miao , H. Y. Wang , N. Alem , G. Hautier , G. M. Rignanese , Z. Q. Mao , V. Gopalan . SnP2S6: A promising infrared nonlinear optical crystal with strongnonresonant second harmonic generation and phase-matchability. ACS Photonics, 2022, 9(5): 1724
CrossRef ADS Google scholar
[31]
X. Bourdon , V. B. Cajipe . Soft-chemistry forms of Sn2P2S6 and CuInP2S6. J. Solid State Chem., 1998, 141(1): 290
CrossRef ADS Google scholar
[32]
S. S. Cheema , D. Kwon , N. Shanker , R. dos Reis , S. L. Hsu , J. Xiao , H. Zhang , R. Wagner , A. Datar , M. R. McCarter , C. R. Serrao , A. K. Yadav , G. Karbasian , C. H. Hsu , A. J. Tan , L. C. Wang , V. Thakare , X. Zhang , A. Mehta , E. Karapetrova , R. V. Chopdekar , P. Shafer , E. Arenholz , C. Hu , R. Proksch , R. Ramesh , J. Ciston , S. Salahuddin . Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580(7804): 478
CrossRef ADS Google scholar
[33]
M. G. Han , M. S. J. Marshall , L. J. Wu , M. A. Schofield , T. Aoki , R. Twesten , J. Hoffman , F. J. Walker , C. H. Ahn , Y. M. Zhu . Interface-induced nonswitchable domains in ferroelectric thin films. Nat. Commun., 2014, 5(1): 4693
CrossRef ADS Google scholar
[34]
M. Stengel , N. A. Spaldin . Origin of the dielectric dead layer in nanoscale capacitors. Nature, 2006, 443(7112): 679
CrossRef ADS Google scholar
[35]
E. Tokumitsu , K. Okamoto , H. Ishiwara . Low voltage operation of nonvolatile metal‒ferroelectric‒metal‒insulator‒semiconductor (MFMIS)-field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn. J. Appl. Phys., 2001, 40(4S): 2917
CrossRef ADS Google scholar
[36]
J. M. Xue , J. Sanchez-Yamagishi , D. Bulmash , P. Jacquod , A. Deshpande , K. Watanabe , T. Taniguchi , P. Jarillo-Herrero , B. J. Leroy . Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater., 2011, 10(4): 282
CrossRef ADS Google scholar
[37]
C. Wang , K. J. Jin , Z. T. Xu , L. Wang , C. Ge , H. B. Lu , H. Z. Guo , M. He , G. Z. Yang . Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl. Phys. Lett., 2011, 98(19): 192901
CrossRef ADS Google scholar
[38]
J. O. Island , S. I. Blanter , M. Buscema , H. S. J. van der Zant , A. Castellanos-Gomez . Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett., 2015, 15(12): 7853
CrossRef ADS Google scholar
[39]
H. H. Fang , W. D. Hu . Photogating in low dimensional photodetectors. Adv. Sci. (Weinh.), 2017, 4(12): 1700323
CrossRef ADS Google scholar
[40]
P. Yu , Q. S. Zeng , C. Zhu , L. J. Zhou , W. N. Zhao , J. C. Tong , Z. Liu , G. W. Yang . Ternary Ta2PdS6 atomic layers for an ultrahigh broadband photoresponsive phototransistor. Adv. Mater., 2021, 33(2): 2005607
CrossRef ADS Google scholar
[41]
Q. J. Liang , Q. X. Wang , Q. Zhang , J. X. Wei , S. X. D. Lim , R. Zhu , J. X. Hu , W. Wei , C. Lee , C. Sow , W. J. Zhang , A. T. S. Wee . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609
CrossRef ADS Google scholar
[42]
G. W. Liang , L. H. Zeng , Y. H. Tsang , L. L. Tao , C. Y. Tang , P. K. Cheng , H. Long , X. Liu , J. Li , J. L. Qu , Q. Wen . Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. J. Mater. Chem. C, 2018, 6(28): 7501
CrossRef ADS Google scholar
[43]
Q. S. Guo , A. Pospischil , M. Bhuiyan , H. Jiang , H. Tian , D. Farmer , B. C. Deng , C. Li , S. J. Han , H. Wang , Q. F. Xia , T. P. Ma , T. Mueller , F. N. Xia . Black phosphorus mid-infrared photodetectors with high gain. Nano Lett., 2016, 16(7): 4648
CrossRef ADS Google scholar
[44]
W. He , L. L. Kong , P. Yu , G. W. Yang . Record-high work-function p-type CuBiP2Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure phototransistor. Adv. Mater., 2023, 35(14): 2209995
CrossRef ADS Google scholar
[45]
L. H. Zeng , D. Wu , S. H. Lin , C. Xie , H. Y. Yuan , W. Lu , S. P. Lau , Y. Chai , L. B. Luo , Z. J. Li , Y. H. Tsang . Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878
CrossRef ADS Google scholar
[46]
D. Wu , J. W. Guo , J. Du , C. X. Xia , L. H. Zeng , Y. Z. Tian , Z. F. Shi , Y. T. Tian , X. J. Li , Y. H. Tsang , J. S. Jie . Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13(9): 9907
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1369-0 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1369-0.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2021YFE0194200 and 2021YFA1200903), the National Natural Science Foundation of China (No. 22175203), the Natural Science Foundation of Guangdong Province (Nos. 2022B1515020065 and 2020A1515110821), and the Guangzhou Science and Technology Project (No. 202102020126). This work was also supported by the Plan Fostering Project of State Key Laboratory of Optoelectronic Materials and Technologies, of Sun Yat-sen University (No. OEMT-2021-PZ-02).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(7343 KB)

Accesses

Citations

Detail

Sections
Recommended

/