Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives

Bin Liu, Xiaolin Zhang, Jingxian Xiong, Xiuyang Pang, Sheng Liu, Zixin Yang, Qiang Yu, Honggen Li, Sicong Zhu, Jian Wu

PDF(6238 KB)
PDF(6238 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43201. DOI: 10.1007/s11467-023-1367-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives

Author information +
History +

Abstract

Currently, magnetic storage devices are encountering the problem of achieving lightweight and high integration in mobile computing devices during the information age. As a result, there is a growing urgency for two-dimensional half-metallic materials with a high Curie temperature (TC). This study presents a theoretical investigation of the fundamental electromagnetic properties of the monolayer hexagonal lattice of Mn2X3 (X = S, Se, Te). Additionally, the potential application of Mn2X3 as magneto-resistive components is explored. All three of them fall into the category of ferromagnetic half-metals. In particular, the Monte Carlo simulations indicate that the TC of Mn2S3 reachs 381 K, noticeably greater than room temperature. These findings present notable advantages for the application of Mn2S3 in spintronic devices. Hence, a prominent spin filtering effect is apparent when employing non-equilibrium Green’s function simulations to examine the transport parameters. The resulting current magnitude is approximately 2 × 104 nA, while the peak gigantic magnetoresistance exhibits a substantial value of 8.36 × 1016 %. It is noteworthy that the device demonstrates a substantial spin Seebeck effect when the temperature differential between the electrodes is modified. In brief, Mn2X3 exhibits outstanding features as a high TC half-metal, exhibiting exceptional capabilities in electrical and thermal drives spin transport. Therefore, it holds great potential for usage in spintronics applications.

Graphical abstract

Keywords

half-metals / Mn2X3 / high Curie temperature / electrical and thermal GMR

Cite this article

Download citation ▾
Bin Liu, Xiaolin Zhang, Jingxian Xiong, Xiuyang Pang, Sheng Liu, Zixin Yang, Qiang Yu, Honggen Li, Sicong Zhu, Jian Wu. Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives. Front. Phys., 2024, 19(4): 43201 https://doi.org/10.1007/s11467-023-1367-2

References

[1]
H. Bian, Y. Y. Goh, Y. Liu, H. Ling, L. Xie, X. Liu. Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater., 2021, 33(46): 2006469
CrossRef ADS Google scholar
[2]
D. Kim, B. Jeon, Y. Lee, D. Kim, Y. Cho, S. Kim. Prospects and applications of volatile memristors. Appl. Phys. Lett., 2022, 121(1): 010501
CrossRef ADS Google scholar
[3]
Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, Q. Liu. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef ADS Google scholar
[4]
S.HamdiouiH. AzizaG.C. Sirakoulis, Memristor based memories: Technology, design and test, in: 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2014, pp 1−7
[5]
T.Endoh, 3D integration of memories including heterogeneous integration, in: 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2021, pp 1−2
[6]
S.IkegawaF. B. MancoffS.Aggarwal, Commercialization of MRAM − Historical and future perspective, in: 2021 IEEE International Interconnect Technology Conference (IITC), 2021, pp 1−3
[7]
Q. Cao, W. Lü, X. R. Wang, X. Guan, L. Wang, S. Yan, T. Wu, X. Wang. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces, 2020, 12(38): 42449
CrossRef ADS Google scholar
[8]
J. Puebla, J. Kim, K. Kondou, Y. Otani. Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mater., 2020, 1(1): 24
CrossRef ADS Google scholar
[9]
X. Zhang, P. Gong, F. Liu, K. Yao, J. Wu, S. Zhu. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510
CrossRef ADS Google scholar
[10]
X.HuD.Li Y.WangJ. FengZ.MaS.WangT.Min X.ZengY. Xie, An 8Kb 40-nm 2T2MTJ STT-MRAM design with 2.6ns access time and time-adjustable writing process, in: 2021 IEEE 14th International Conference on ASIC (ASICON), 2021, pp 1−4
[11]
M. Hatami, G. E. W. Bauer, Q. Zhang, P. J. Kelly. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett., 2007, 99(6): 066603
CrossRef ADS Google scholar
[12]
S. D. Sarma. Spintronics: A new class of device based on electron spin, rather than on charge, may yield the next generation of microelectronics. Am. Sci., 2001, 89(6): 516
CrossRef ADS Google scholar
[13]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
CrossRef ADS Google scholar
[14]
C. Zheng, K. Jiang, K. Yao, S. Zhu, K. Wu. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys., 2021, 23(43): 24570
CrossRef ADS Google scholar
[15]
S. C. Zhu, S. J. Peng, K. M. Wu, C. T. Yip, K. L. Yao, C. H. Lam. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys., 2018, 20(32): 21105
CrossRef ADS Google scholar
[16]
Z. Cao, B. Sun, G. Zhou, S. Mao, S. Zhu, J. Zhang, C. Ke, Y. Zhao, J. Shao. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz., 2023, 8(6): 716
CrossRef ADS Google scholar
[17]
S.S. IyerB. Vaisband, Heterogeneous integration at scale, in: Advances in Semiconductor Technologies, Wiley, 2022, pp 1−24
[18]
B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef ADS Google scholar
[19]
Y. Lv, W. Qin, C. Wang, L. Liao, X. Liu. Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv. Electron. Mater., 2019, 5(1): 1800569
CrossRef ADS Google scholar
[20]
S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, J. E. Goldberger. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898
CrossRef ADS Google scholar
[21]
R. Guo, Y. Guo, Y. Zhang, X. Gong, T. Zhang, X. Yu, S. Yuan, J. Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys., 2023, 18(4): 43304
CrossRef ADS Google scholar
[22]
J. F. Dayen, S. J. Ray, O. Karis, I. J. Vera-Marun, M. V. Kamalakar. Two-dimensional van der Waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev., 2020, 7(1): 011303
CrossRef ADS Google scholar
[23]
C. Xin, J. Zheng, Y. Su, S. Li, B. Zhang, Y. Feng, F. Pan. Few-layer tin sulfide: A new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility. J. Phys. Chem. C, 2016, 120(39): 22663
CrossRef ADS Google scholar
[24]
J. Cheng, C. Wang, X. Zou, L. Liao. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater., 2019, 7(1): 1800441
CrossRef ADS Google scholar
[25]
W. J. Yin, X. L. Zeng, B. Wen, Q. X. Ge, Y. Xu, G. Teobaldi, L. M. Liu. The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
CrossRef ADS Google scholar
[26]
B. Mendoza-Sánchez, Y. Gogotsi. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater., 2016, 28(29): 6104
CrossRef ADS Google scholar
[27]
M. Fidrysiak, J. Spałek. Universal collective modes from strong electronic correlations: Modified 1/Nf theory with application to high-Tc cuprates. Phys. Rev. B, 2021, 103(16): 165111
CrossRef ADS Google scholar
[28]
P. Laurell, S. Okamoto. Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3. npj Quantum Mater., 2020, 5: 2
CrossRef ADS Google scholar
[29]
L. Zhang, C. Zhang, S. F. Zhang, W. Ji, P. Li, P. Wang. Two-dimensional honeycomb-kagome Ta2S3: A promising single-spin Dirac fermion and quantum anomalous hall insulator with half-metallic edge states. Nanoscale, 2019, 11(12): 5666
CrossRef ADS Google scholar
[30]
Z. X. Shen, X. Bo, K. Cao, X. Wan, L. He. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B, 2021, 103(8): 085102
CrossRef ADS Google scholar
[31]
S. K. Pati, S. Ramasesha, D. Sen. Low-lying excited states and low-temperature properties of an alternating spin-1‒spin-1/2 chain: A density-matrix renormalization-group study. Phys. Rev. B, 1997, 55(14): 8894
CrossRef ADS Google scholar
[32]
H. Wang, J. Qi, X. Qian. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett., 2020, 117(8): 083102
CrossRef ADS Google scholar
[33]
M. C. Wang, C. C. Huang, C. H. Cheung, C. Y. Chen, S. G. Tan, T. W. Huang, Y. Zhao, Y. Zhao, G. Wu, Y. P. Feng, H. C. Wu, C. R. Chang. Prospects and opportunities of 2D van der Waals magnetic systems. Ann. Phys., 2020, 532(5): 1900452
CrossRef ADS Google scholar
[34]
D. L. Cortie, G. L. Causer, K. C. Rule, H. Fritzsche, W. Kreuzpaintner, F. Klose. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater., 2020, 30(18): 1901414
CrossRef ADS Google scholar
[35]
J. Xing, X. Jiang, Z. Liu, Y. Qi, J. Zhao. Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-Kagome lattice. Nanoscale, 2022, 14(5): 2023
CrossRef ADS Google scholar
[36]
H. P. Wang, W. Luo, H. J. Xiang. Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides. Phys. Rev. B, 2017, 95(12): 125430
CrossRef ADS Google scholar
[37]
X. K. Liu, X. Y. Li, M. J. Ren, P. J. Wang, C. W. Zhang. High-temperature nodal ring semimetal in two-dimensional honeycomb-Kagome Mn2N3 lattice. Chin. Phys. B, 2022, 31(12): 127203
CrossRef ADS Google scholar
[38]
S. Zhang, C. Zhang, S. Zhang, W. Ji, P. Li, P. Wang, S. Li, S. Yan. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys. Rev. B, 2017, 96(20): 205433
CrossRef ADS Google scholar
[39]
J. Y. Chen, X. X. Li, W. Z. Zhou, J. L. Yang, F. P. Ouyang, X. Xiong. Large-spin-gap nodal-line half-metal and high-temperature ferromagnetic semiconductor in Cr2X3 (X = O, S, Se) monolayers. Adv. Electron. Mater., 2020, 6(1): 1900490
CrossRef ADS Google scholar
[40]
R. Addou, A. Dahal, M. Batzill. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nat. Nanotechnol., 2013, 8(1): 41
CrossRef ADS Google scholar
[41]
T. T. Song, M. Yang, J. W. Chai, M. Callsen, J. Zhou, T. Yang, Z. Zhang, J. S. Pan, D. Z. Chi, Y. P. Feng, S. J. Wang. The stability of aluminium oxide monolayer and its interface with two-dimensional materials. Sci. Rep., 2016, 6(1): 29221
CrossRef ADS Google scholar
[42]
C. Zhao, H. Zhang, W. Si, H. Wu. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun., 2016, 7(1): 12543
CrossRef ADS Google scholar
[43]
Y. Feng, N. Liu, G. Gao. Spin transport properties in Dirac spin gapless semiconductors Cr2X3 with high Curie temperature and large magnetic anisotropic energy. Appl. Phys. Lett., 2021, 118(11): 112407
CrossRef ADS Google scholar
[44]
I. G. Dance, K. J. Fisher. Density functional calculations of electronic structure, geometric structure and stability for molecular manganese sulfide clusters. J. Chem. Soc. Dalton Trans., 1997, (15): 2563
CrossRef ADS Google scholar
[45]
X. G. Li, J. N. Fry, H. P. Cheng. Single-molecule magnet Mn12 on graphene. Phys. Rev. B, 2014, 90(12): 125447
CrossRef ADS Google scholar
[46]
A. Mabrouki, T. Mnasri, A. Bougoffa, A. Benali, E. Dhahri, M. A. Valente. Experimental study and DFT calculation of the oxygen deficiency effects on structural, magnetic and optical properties of La0.8□0.2MnO3−δ (δ = 0, 0.1 and 0.2) compounds. J. Alloys Compd., 2021, 860: 157922
CrossRef ADS Google scholar
[47]
R. Kaur, T. Maitra, T. Nautiyal. Study of structural and electronic properties of Mn3O4. AIP Conf. Proc., 2014, 1591: 1137
CrossRef ADS Google scholar
[48]
U. del Pennino, V. De Renzi, R. Biagi, V. Corradini, L. Zobbi, A. Cornia, D. Gatteschi, F. Bondino, E. Magnano, M. Zangrando, M. Zacchigna, A. Lichtenstein, D. W. Boukhvalov. Valence band resonant photoemission of Mn12 single molecules grafted on Au(111) surface. Surf. Sci., 2006, 600(18): 4185
CrossRef ADS Google scholar
[49]
G. Ding, C. Xie, J. Bai, Z. Cheng, X. Wang, W. Wu. Recipe for single-pair-Weyl-points phonons carrying the same chiral charges. Phys. Rev. B, 2023, 108(2): L020302
CrossRef ADS Google scholar
[50]
G. Ding, C. Xie, J. Gong, J. Wang, J. Bai, W. Wang, D. Li, X. P. Li, X. Wang. Exotic topological phonon modes in semiconductors: Symmetry analysis and first-principles calculations for representative examples. Phys. Rev. B, 2023, 108(7): 075201
CrossRef ADS Google scholar
[51]
X. Lu, R. Fei, L. Yang. Curie temperature of emerging two-dimensional magnetic structures. Phys. Rev. B, 2019, 100(20): 205409
CrossRef ADS Google scholar
[52]
D. Torelli, K. S. Thygesen, T. Olsen. High throughput computational screening for 2D ferromagnetic materials: The critical role of anisotropy and local correlations. 2D Mater., 2019, 6: 045018
CrossRef ADS Google scholar
[53]
J. Sun, X. Zhong, W. Cui, J. Shi, J. Hao, M. Xu, Y. Li. The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides. Phys. Chem. Chem. Phys., 2020, 22(4): 2429
CrossRef ADS Google scholar
[54]
Y. Hu, X. Y. Liu, Z. H. Shen, Z. F. Luo, Z. G. Chen, X. L. Fan. High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 2020, 12(21): 11627
CrossRef ADS Google scholar
[55]
Z. Guan, S. Ni. Strain-controllable high Curie temperature and magnetic crystal anisotropy in a 2D ferromagnetic semiconductive FeI3 monolayer. ACS Appl. Electron. Mater., 2021, 3(7): 3147
CrossRef ADS Google scholar
[56]
Y. Sun, Z. Zhuo, X. Wu. Bipolar magnetism in a two-dimensional NbS2 semiconductor with high Curie temperature. J. Mater. Chem. C, 2018, 6(42): 11401
CrossRef ADS Google scholar
[57]
Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, Y. Zhang. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
CrossRef ADS Google scholar
[58]
F. Zhou, Y. Liu, M. Kuang, P. Wang, J. Wang, T. Yang, X. Wang, Z. Cheng, G. Zhang. Time-reversal-breaking Weyl nodal lines in two-dimensional A3C2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature. Nanoscale, 2021, 13(17): 8235
CrossRef ADS Google scholar
[59]
Z. Jiang, P. Wang, J. Xing, X. Jiang, J. Zhao. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces, 2018, 10(45): 39032
CrossRef ADS Google scholar
[60]
Z.LiuJ. LiuJ.Zhao, YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics, Nano Res. 10(6), 1972 (2017)
[61]
W. Yu, J. Li, T. S. Herng, Z. Wang, X. Zhao, X. Chi, W. Fu, I. Abdelwahab, J. Zhou, J. Dan, Z. Chen, Z. Chen, Z. Li, J. Lu, S. J. Pennycook, Y. P. Feng, J. Ding, K. P. Loh. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater., 2019, 31(40): 1903779
CrossRef ADS Google scholar
[62]
X. Zhang, X. Wang, T. He, L. Wang, W. Yu, Y. Liu, G. Liu, Z. Cheng. Magnetic topological materials in two-dimensional: Theory, material realization and application prospects. Sci. Bull. (Beijing), 2023, 68(21): 2639
CrossRef ADS Google scholar
[63]
X. L. Wang. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett., 2008, 100(15): 156404
CrossRef ADS Google scholar
[64]
G. Shan, Z. Ding, Y. Gogotsi. Two-dimensional MXenes and their applications. Front. Phys., 2023, 18(1): 13604
CrossRef ADS Google scholar
[65]
C. Fang, H. Weng, X. Dai, Z. Fang. Topological nodal line semimetals. Chin. Phys. B, 2016, 25(11): 117106
CrossRef ADS Google scholar
[66]
Y. Li, Z. Zhou, P. Shen, Z. Chen. Spin gapless semiconductor−metal−half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3(7): 1952
CrossRef ADS Google scholar
[67]
Q. Gao, I. Opahle, H. Zhang. High-throughput screening for spin-gapless semiconductors in quaternary Heusler compounds. Phys. Rev. Mater., 2019, 3(2): 024410
CrossRef ADS Google scholar
[68]
S. D. Guo, Y. L. Tao, G. Wang, S. Chen, D. Huang, Y. S. Ang. Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor. Front. Phys., 2024, 19(2): 23302
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary materials available at https://doi.org/10.1007/s11467-023-1367-2 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1367-2.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11704291 and 12174296), the Hubei Province Key Laboratory of Systems Science in Metallurgical Process of Wuhan University of Science and Technology (Grant Nos. Y202101 and Y202208), the Scientific research project of Education Department of Hubei Province (Grant No. 2022024), the Postgraduate Scientific Research Innovation Project of Hunan Province (Grant No. QL20230006), and the High-Performance Computing Center of Wuhan University of Science and Technology. S. C. Z. also acknowledges the support from China Scholarship Council.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(6238 KB)

Accesses

Citations

Detail

Sections
Recommended

/