Resonant four-photon photoemission from SnSe2(001)

Chengxiang Jiao, Kai Huang, Hongli Guo, Xingxia Cui, Qing Yuan, Cancan Lou, Guangqiang Mei, Chunlong Wu, Nan Xu, Limin Cao, Min Feng

PDF(5943 KB)
PDF(5943 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33207. DOI: 10.1007/s11467-023-1365-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Resonant four-photon photoemission from SnSe2(001)

Author information +
History +

Abstract

High-order nonlinear multiphoton absorption is usually inefficient, but can be enhanced by designing resonant excitations between occupied and unoccupied energy levels. We conducted angle-resolved multi-photon photoemission (mPPE) studies on the SnSe2(001) surfaces excited by ultrashort laser pulses. By tuning photon energy and light polarization, we demonstrate the presence of a resonant four-photon photoemission (4PPE) process involving the occupied valence band (VB), the unoccupied second conduction band (CB2) and the unoccupied image-potential state (IPs) of SnSe2. In this 4PPE process, VB electrons of SnSe2 are resonantly excited into CB2 by adsorbing two photons, followed by the adsorption of another photon to populate the n = 1 IPs before being emitted out to the vacuum by adsorbing one more photon. This results in a double-resonant 4PPE process, which exhibits approximately a 40 times enhancement in photoemission yields compared to cases where one of the resonant pathways, CB2 → IPs, is inhibited by involving a virtual state instead of the IPs in the 4PPE. The double-resonant 4PPE process efficiently excite the bulk VB electrons outside the vacuum, like taking advantage of resonant “ladders” through two real empty electronic states of SnSe2. Our results highlight the important applications of mPPE in probing the band-structure, particularly the unoccupied states, of recently emerging main group dichalcogenide semiconductors. Furthermore, the discovered resonant mPPE process contributes to the exploration of their promising optoelectronic applications.

Graphical abstract

Keywords

multi-photon photoemission / four-photon photoemission / SnSe2 / unoccupied states / resonant excitation

Cite this article

Download citation ▾
Chengxiang Jiao, Kai Huang, Hongli Guo, Xingxia Cui, Qing Yuan, Cancan Lou, Guangqiang Mei, Chunlong Wu, Nan Xu, Limin Cao, Min Feng. Resonant four-photon photoemission from SnSe2(001). Front. Phys., 2024, 19(3): 33207 https://doi.org/10.1007/s11467-023-1365-4

References

[1]
H. Petek , S. Ogawa . Femtosecond time-resolved two-photon photoemission studies of electron dynamics in metals. Prog. Surf. Sci., 1997, 56(4): 239
CrossRef ADS Google scholar
[2]
T. Fauster , M. Weinelt , U. Höfer . Quasi-elastic scattering of electrons in image-potential states. Prog. Surf. Sci., 2007, 82(4−6): 224
CrossRef ADS Google scholar
[3]
K. Giesen , F. Hage , F. Himpsel , H. Riess , W. Steinmann . Two-photon photoemission via image-potential states. Phys. Rev. Lett., 1985, 55(3): 300
CrossRef ADS Google scholar
[4]
R. Schoenlein , J. G. Fujimoto , G. Eesley , T. Capehart . Femtosecond studies of image-potential dynamics in metals. Phys. Rev. Lett., 1988, 61(22): 2596
CrossRef ADS Google scholar
[5]
C.WaldfriedD.McIlroyJ.ZhangP.DowbenG.KatrichE.W. Plummer, Determination of the surface Debye temperature of Mo(112) using valence band photoemission, Surf. Sci. 363(1‒3), 296 (1996)
[6]
F. Bisio , A. Winkelmann , C. Chiang , H. Petek , J. Kirschner . Band structure effects in above threshold photoemission. J. Phys.: Condens. Matter, 2011, 23(48): 485002
CrossRef ADS Google scholar
[7]
A. Winkelmann , W. C. Lin , C. T. Chiang , F. Bisio , H. Petek , J. Kirschner . Resonant coherent three-photon photoemission from Cu(001). Phys. Rev. B, 2009, 80(15): 155128
CrossRef ADS Google scholar
[8]
F. Bisio , M. Nývlt , J. Franta , H. Petek , J. Kirschner . Mechanisms of high-order perturbative photoemission from Cu(001). Phys. Rev. Lett., 2006, 96(8): 087601
CrossRef ADS Google scholar
[9]
M. Reutzel , A. Li , Z. Wang , H. Petek . Coherent multidimensional photoelectron spectroscopy of ultrafast quasiparticle dressing by light. Nat. Commun., 2020, 11(1): 2230
CrossRef ADS Google scholar
[10]
Y. Lin , Y. Li , J. T. Sadowski , W. Jin , J. I. Dadap , M. S. Hybertsen . Excitation and characterization of image potential state electrons on quasi-free-standing graphene. Phys. Rev. B, 2018, 97(16): 165413
CrossRef ADS Google scholar
[11]
A. A. Ünal , C. Tusche , S. Ouazi , S. Wedekind , C. T. Chiang , A. Winkelmann , D. Sander , J. Henk , J. Kirschner . Hybridization between the unoccupied Shockley surface state and bulk electronic states on Cu(111). Phys. Rev. B, 2011, 84(7): 073107
CrossRef ADS Google scholar
[12]
H. Petek , A. Li , X. Li , S. Tan , M. Reutzel . Plasmonic decay into hot electrons in silver. Prog. Surf. Sci., 2023, 98(3): 100707
CrossRef ADS Google scholar
[13]
M. Reutzel , A. Li , H. Petek . Coherent two-dimensional multiphoton photoelectron spectroscopy of metal surfaces. Phys. Rev. X, 2019, 9(1): 011044
CrossRef ADS Google scholar
[14]
S. Ogawa , H. Petek . Two-photon photoemission spectroscopy at clean and oxidized Cu(110) and Cu(100) surfaces. Surf. Sci., 1996, 363(1−3): 313
CrossRef ADS Google scholar
[15]
S. Luan , R. Hippler , H. Schwier , H. Lutz . Electron emission from polycrystalline copper surfaces by multi-photon absorption. Europhys. Lett., 1989, 9(5): 489
CrossRef ADS Google scholar
[16]
W. Fann , R. Storz , J. Bokor . Observation of above-threshold multiphoton photoelectric emission from image-potential surface states. Phys. Rev. B, 1991, 44(19): 10980
CrossRef ADS Google scholar
[17]
S. Irvine , A. Dechant , A. Elezzabi . Generation of 0.4-keV femtosecond electron pulses using impulsively excited surface plasmons. Phys. Rev. Lett., 2004, 93(18): 184801
CrossRef ADS Google scholar
[18]
I.KinoshitaT.AnazawaY.Matsumoto, Surface and image-potential states on Pt(111) probed by two-and three-photon photoemission, Chem. Phys. Lett. 259(3‒4), 445 (1996)
[19]
J. Kupersztych , P. Monchicourt , M. Raynaud . Ponderomotive acceleration of photoelectrons in surface-plasmon-assisted multiphoton photoelectric emission. Phys. Rev. Lett., 2001, 86(22): 5180
CrossRef ADS Google scholar
[20]
S. Tan , A. Argondizzo , C. Wang , X. Cui , H. Petek . Ultrafast multiphoton thermionic photoemission from graphite. Phys. Rev. X, 2017, 7(1): 011004
CrossRef ADS Google scholar
[21]
S. Tan , Y. Dai , S. Zhang , L. Liu , J. Zhao , H. Petek . Coherent electron transfer at the Ag/graphite heterojunction interface. Phys. Rev. Lett., 2018, 120(12): 126801
CrossRef ADS Google scholar
[22]
S. Tan , L. Liu , Y. Dai , J. Ren , J. Zhao , H. Petek . Ultrafast plasmon-enhanced hot electron generation at Ag nanocluster/graphite heterojunctions. J. Am. Chem. Soc., 2017, 139(17): 6160
CrossRef ADS Google scholar
[23]
C. A. Formstone , E. T. FitzGerald , D. O’Hare , P. A. Cox , M. Kurmoo , J. W. Hodby , D. Lillicrap , M. Goss-Custard . Observation of superconductivity in the organometallic intercalation compound SnSe2{Co(η-C5H5)2}0.33. J. Chem. Soc. Chem. Commun., 1990, 0(6): 501
CrossRef ADS Google scholar
[24]
C. A. Formstone , M. Kurmoo , E. T. FitzGerald , P. A. Cox , D. O’Hare . Single-crystal conductivity study of the tin dichalcogenides SnS2–xSex intercalated with cobaltocene. J. Mater. Chem., 1991, 1(1): 51
CrossRef ADS Google scholar
[25]
D. O’Hare , H. V. Wong , S. Hazell , J. W. Hodby . Relatively isotropic superconductivity at 8.3 K in the Lamellar organometallic intercalate SnSe2{Co(η-C5H5)2}0.3. Adv. Mater., 1992, 4(10): 658
CrossRef ADS Google scholar
[26]
Z. Li , Y. Zhao , K. Mu , H. Shan , Y. Guo , J. Wu , Y. Su , Q. Wu , Z. Sun , A. Zhao , X. Cui , C. Wu , Y. Xie . Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc., 2017, 139(45): 16398
CrossRef ADS Google scholar
[27]
G. R. Bhimanapati , Z. Lin , V. Meunier , Y. Jung , J. Cha , S. Das , D. Xiao , Y. Son , M. S. Strano , V. R. Cooper , L. Liang , S. G. Louie , E. Ringe , W. Zhou , S. S. Kim , R. R. Naik , B. G. Sumpter , H. Terrones , F. Xia , Y. Wang , J. Zhu , D. Akinwande , N. Alem , J. A. Schuller , R. E. Schaak , M. Terrones , J. A. Robinson . Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509
CrossRef ADS Google scholar
[28]
R. A. Klemm . Pristine and intercalated transition metal dichalcogenide superconductors. Physica C, 2015, 514: 86
CrossRef ADS Google scholar
[29]
X. Zhou , L. Gan , W. Tian , Q. Zhang , S. Jin , H. Li , Y. Bando , D. Golberg , T. Zhai . Ultrathin SnSe2 flakes grown by chemical vapor deposition for high‐performance photodetectors. Adv. Mater., 2015, 27(48): 8035
CrossRef ADS Google scholar
[30]
A. Giri , G. Park , U. Jeong . Layer-structured anisotropic metal chalcogenides: Recent advances in synthesis, modulation, and applications. Chem. Rev., 2023, 123(7): 3329
CrossRef ADS Google scholar
[31]
E. P. Mukhokosi , G. V. Manohar , T. Nagao , S. B. Krupanidhi , K. K. Nanda . Device architecture for visible and near-infrared photodetectors based on two-dimensional SnSe2 and MoS2: A review. Micromachines (Basel), 2020, 11(8): 750
CrossRef ADS Google scholar
[32]
X. Li , L. Li , H. Zhao , S. Ruan , W. Zhang , P. Yan , Z. Sun , H. Liang , K. Tao . SnSe2 quantum dots: Facile fabrication and application in highly responsive UV-detectors. Nanomaterials (Basel), 2019, 9(9): 1324
CrossRef ADS Google scholar
[33]
E. Mooser , W. B. Pearson . New semiconducting compounds. Phys. Rev., 1956, 101(1): 492
CrossRef ADS Google scholar
[34]
G. Domingo , R. S. Itoga , C. R. Kannewurf . Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev., 1966, 143(2): 536
CrossRef ADS Google scholar
[35]
M. Y. Auyang , M. L. Cohen . Electronic structure and optical properties of SnS2 and SnSe2. Phys. Rev., 1969, 178(3): 1279
CrossRef ADS Google scholar
[36]
R. Williams , R. Murray , D. Govan , J. Thomas , E. Evans . Band structure and photoemission studies of SnS2 and SnSe2. I. Experimental. J. Phys. C Solid State Phys., 1973, 6(24): 3631
CrossRef ADS Google scholar
[37]
R. Cohen , G. Wertheim , A. Rosencwaig , H. Guggenheim . Multiplet splitting of the 4s and 5s electrons of the rare earths. Phys. Rev. B, 1972, 5(3): 1037
CrossRef ADS Google scholar
[38]
G. Domingo , R. Itoga , C. Kannewurf . Fundamental optical absorption in SnS2 and SnSe2. Phys. Rev., 1966, 143(2): 536
CrossRef ADS Google scholar
[39]
C. Fong , M. Cohen . Electronic charge densities for two layer semiconductors − SnS2 and SnSe2. J. Phys. C Solid State Phys., 1974, 7(1): 107
CrossRef ADS Google scholar
[40]
J. George , K. Joseph . Absorption edge measurements in tin disulphide thin films. J. Phys. D Appl. Phys., 1982, 15(6): 1109
CrossRef ADS Google scholar
[41]
M. Schlüter , M. L. Cohen . Valence-band density of states and chemical bonding for several non-transition-metal layer compounds: SnSe2, PbI2, BiI3, and GaSe. Phys. Rev. B, 1976, 14(2): 424
CrossRef ADS Google scholar
[42]
A. Smith , P. Meek , W. Liang . Raman scattering studies of SnS2 and SnSe2. J. Phys. C Solid State Phys., 1977, 10(8): 1321
CrossRef ADS Google scholar
[43]
R. Schlaf , C. Pettenkofer , W. Jaegermann . Band lineup of a SnS2/SnSe2/SnS2 semiconductor quantum well structure prepared by van der Waals epitaxy. J. Appl. Phys., 1999, 85(9): 6550
CrossRef ADS Google scholar
[44]
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[45]
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[46]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[47]
M. A. Franzman , C. W. Schlenker , M. E. Thompson , R. L. Brutchey . Solution-phase synthesis of SnSe nanocrystals for use in solar cells. J. Am. Chem. Soc., 2010, 132(12): 4060
CrossRef ADS Google scholar
[48]
L. Li , Z. Chen , Y. Hu , X. Wang , T. Zhang , W. Chen , Q. Wang . Single-layer single-crystalline SnSe nanosheets. J. Am. Chem. Soc., 2013, 135(4): 1213
CrossRef ADS Google scholar
[49]
C. Zhang , H. Yin , M. Han , Z. Dai , H. Pang , Y. Zheng , Y. Q. Lan , J. Bao , J. Zhu . Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano, 2014, 8(4): 3761
CrossRef ADS Google scholar
[50]
X. Zhou , L. Gan , W. Tian , Q. Zhang , S. Jin , H. Li , Y. Bando , D. Golberg , T. Zhai . Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater., 2015, 27(48): 8035
CrossRef ADS Google scholar
[51]
Y. Zhou , B. Zhang , X. Chen , C. Gu , C. An , Y. Zhou , K. Cai , Y. Yuan , C. Chen , H. Wu , R. Zhang , C. Park , Y. Xiong , X. Zhang , K. Wang , Z. Yang . Pressure‐induced metallization and robust superconductivity in pristine 1T‐SnSe2. Adv. Electron. Mater., 2018, 4(8): 1800155
CrossRef ADS Google scholar
[52]
A.J. FortyVI. The growth of cadmium iodide crystals (I): Dislocations and spiral growth, Lond. Edinb. Dublin Philos. Mag. J. Sci. 43(336), 72 (1952)
[53]
B. E. Brown , D. J. Beerntsen . Layer structure polytypism among niobium and tantalum selenides. Acta Crystallogr., 1965, 18(1): 31
CrossRef ADS Google scholar
[54]
E. Bjerkelund , A. Kjkshus . On the structural properties of the Ta1+xSe2 phase. Acta Chem. Scand., 1967, 21: 513
CrossRef ADS Google scholar
[55]
Y.-H. Mao , H. Shan , J.-R. Wu , Z.-J. Li , C.-Z. Wu , X.-F. Zhai , A.-D. Zhao , B. Wang . Observation of pseudogap in SnSe2 atomic layers grown on graphite. Front. Phys., 2020, 15(4): 43501
CrossRef ADS Google scholar
[56]
Y. M. Zhang , J. Q. Fan , W. L. Wang , D. Zhang , L. Wang , W. Li , K. He , C. L. Song , X. C. Ma , Q. K. Xue . Observation of interface superconductivity in a SnSe2/epitaxial graphene van der Waals heterostructure. Phys. Rev. B, 2018, 98(22): 220508
CrossRef ADS Google scholar
[57]
E. B. Lochocki , S. Vishwanath , X. Liu , M. Dobrowolska , J. Furdyna , H. G. Xing , K. M. Shen . Electronic structure of SnSe2 films grown by molecular beam epitaxy. Appl. Phys. Lett., 2019, 114(9): 091602
CrossRef ADS Google scholar
[58]
R. Schlaf , O. Lang , C. Pettenkofer , W. Jaegermann . Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule. J. Appl. Phys., 1999, 85(5): 2732
CrossRef ADS Google scholar
[59]
Q. Zhang , M. O. Li , E. B. Lochocki , S. Vishwanath , X. Liu , R. Yan , H. H. Lien , M. Dobrowolska , J. Furdyna , K. M. Shen , G. Cheng , A. R. Hight Walker , D. J. Gundlach , H. G. Xing , N. V. Nguyen . Band offset and electron affinity of MBE-grown SnSe2. Appl. Phys. Lett., 2018, 112(4): 042108
CrossRef ADS Google scholar
[60]
W. Steinmann . Two‐photon photoemission spectroscopy of electronic states at metal surfaces. Phys. Status Solidi B, 1995, 192(2): 339
CrossRef ADS Google scholar
[61]
J. M. Gonzalez , I. I. Oleynik . Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B, 2016, 94(12): 125443
CrossRef ADS Google scholar
[62]
Y.PeterM.Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer Science & Business Media, 2010
[63]
H. Petek , A. Heberle , W. Nessler , H. Nagano , S. Kubota , S. Matsunami , N. Moriya , S. Ogawa . Optical phase control of coherent electron dynamics in metals. Phys. Rev. Lett., 1997, 79(23): 4649
CrossRef ADS Google scholar
[64]
S. Ogawa , H. Nagano , H. Petek , A. Heberle . Optical dephasing in Cu(111) measured by interferometric two-photon time-resolved photoemission. Phys. Rev. Lett., 1997, 78(7): 1339
CrossRef ADS Google scholar
[65]
H. Petek , H. Nagano , S. Ogawa . Hole decoherence of d bands in copper. Phys. Rev. Lett., 1999, 83(4): 832
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Author contributions

C.X.J. and K.H. performed mPPE measurements. H.L.G. and K.H. performed first-principles calculations. X.X.C., Q.Y., C.C.L. assisted with the STM measurements. C.L.W. and N.X. performed ARPES measurements. G.Q.M. and L.M.C. grew the SnSe2 single crystals. M.F. and L.M.C. initiated the project and experiments. M.F. and L.M.C. analyzed the data and wrote the manuscript with input from all authors.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1365-4 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1365-4.

Acknowledgements

We gratefully acknowledge the productive discussions with Shijing Tan, Xuefeng Cui and Hrvoje Petek. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XD30000000), the National Key R&D Program of China (Grant Nos. 2018YFA0305802 and 2017YFA0303500), and the National Natural Science Foundation of China (Grant No. 11774267). Calculations were performed at the supercomputing center of WHU of China.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5943 KB)

Accesses

Citations

Detail

Sections
Recommended

/