Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe

Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai

PDF(5757 KB)
PDF(5757 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33202. DOI: 10.1007/s11467-023-1354-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe

Author information +
History +

Abstract

We examine the electronic and transport properties of a new phase PdSe monolayer with a puckered structure calculated by first-principles and Boltzmann transport equation. The spin−orbit coupling is found to play a negligible effect on the electronic properties of PdSe monolayer. The lattice thermal conductivity of PdSe monolayer exhibits remarkable anisotropic characteristic due to anisotropic phonon group velocity along different directions and its intrinsic structure anisotropy. The compromised electronic mobility despite a relatively low thermal conduction results in a moderate ZT value but significantly anisotropic thermoelectric performance in single-layer PdSe. The present work suggests that the remarkable thermal transport anisotropy of PdSe monolayer can be used for thermal management, and enhance the scope of possibilities for heat flow manipulation in PdSe based devices. The sizeable puckered cages and wiggling lattice implies it an ideal platform for ionic and molecular engineering for thermoelectronic applications.

Graphical abstract

Keywords

2D materials / first-principles calculations / phonon

Cite this article

Download citation ▾
Zheng Shu, Huifang Xu, Hejin Yan, Yongqing Cai. Strong anisotropy of thermal transport in the monolayer of a new puckered phase of PdSe. Front. Phys., 2024, 19(3): 33202 https://doi.org/10.1007/s11467-023-1354-7

References

[1]
K.S. NovoselovV.I. Fal′koL.ColomboP.R. GellertM.G. SchwabK.Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
[2]
G. Shan , Z. Ding , Y. Gogotsi . Two-dimensional MXenes and their applications. Front. Phys., 2023, 18(1): 13604
CrossRef ADS Google scholar
[3]
K. S. Novoselov , D. V. Andreeva , W. C. Ren , G. C. Shan . Graphene and other two-dimensional materials. Front. Phys., 2019, 14(1): 13301
CrossRef ADS Google scholar
[4]
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[5]
W. Cai , A. L. Moore , Y. Zhu , X. Li , S. Chen , L. Shi , R. S. Ruoff . Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Lett., 2010, 10(5): 1645
CrossRef ADS Google scholar
[6]
J. K. Ellis , M. J. Lucero , G. E. Scuseria . The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett., 2011, 99(26): 261908
CrossRef ADS Google scholar
[7]
H. Li , Q. Zhang , C. C. R. Yap , B. K. Tay , T. H. T. Edwin , A. Olivier , D. Baillargeat . From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
CrossRef ADS Google scholar
[8]
Z. Shu , X. Cui , B. Wang , H. Yan , Y. Cai . Fast intercalation of lithium in semi‐metallic γ‐GeSe nanosheet: A new group‐IV monochalcogenide for lithium‐ion battery application. ChemSusChem, 2022, 15(15): e202200564
CrossRef ADS Google scholar
[9]
Y. Feng , W. Zhou , Y. Wang , J. Zhou , E. Liu , Y. Fu , Z. Ni , X. Wu , H. Yuan , F. Miao , B. Wang , X. Wan , D. Xing . Raman vibrational spectra of bulk to monolayer ReS2 with lower symmetry. Phys. Rev. B, 2015, 92(5): 054110
CrossRef ADS Google scholar
[10]
A. Laturia , M. L. Van de Put , W. G. Vandenberghe . Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk. npj 2D Mater. Appl., 2018, 2(1): 6
CrossRef ADS Google scholar
[11]
T. Yang , T. T. Song , J. Zhou , S. Wang , D. Chi , L. Shen , M. Yang , Y. P. Feng . High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy, 2020, 68: 104304
CrossRef ADS Google scholar
[12]
Z. Shu , H. Yan , H. Chen , Y. Cai . Mutual modulation via charge transfer and unpaired electrons of catalytic sites for the superior intrinsic activity of N2 reduction: From high-throughput computation assisted with a machine learning perspective. J. Mater. Chem. A, 2022, 10(10): 5470
CrossRef ADS Google scholar
[13]
L. Pan , Z. Wang , J. Carrete , G. K. H. Madsen . Thermoelectric properties of the Janus PtSTe monolayer compared with its parent structures. Phys. Rev. Mater., 2022, 6(8): 084005
CrossRef ADS Google scholar
[14]
C. Tan , P. Yu , Y. Hu , J. Chen , Y. Huang , Y. Cai , Z. Luo , B. Li , Q. Lu , L. Wang , Z. Liu , H. Zhang . High-yield exfoliation of ultrathin two-dimensional ternary chalcogenide nanosheets for highly sensitive and selective fluorescence DNA sensors. J. Am. Chem. Soc., 2015, 137(32): 10430
CrossRef ADS Google scholar
[15]
E. Liu , Y. Fu , Y. Wang , Y. Feng , H. Liu , X. Wan , W. Zhou , B. Wang , L. Shao , C. H. Ho , Y. S. Huang , Z. Cao , L. Wang , A. Li , J. Zeng , F. Song , X. Wang , Y. Shi , H. Yuan , H. Y. Hwang , Y. Cui , F. Miao , D. Xing . Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors. Nat. Commun., 2015, 6(1): 6991
CrossRef ADS Google scholar
[16]
J. Yuan , Y. Chen , Y. Xie , X. Zhang , D. Rao , Y. Guo , X. Yan , Y. P. Feng , Y. Cai . Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proc. Natl. Acad. Sci. USA, 2020, 117(12): 6362
CrossRef ADS Google scholar
[17]
A. D. Oyedele , S. Yang , L. Liang , A. A. Puretzky , K. Wang , J. Zhang , P. Yu , P. R. Pudasaini , A. W. Ghosh , Z. Liu , C. M. Rouleau , B. G. Sumpter , M. F. Chisholm , W. Zhou , P. D. Rack , D. B. Geohegan , K. Xiao . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
CrossRef ADS Google scholar
[18]
A. N. Hoffman , Y. Gu , L. Liang , J. D. Fowlkes , K. Xiao , P. D. Rack . Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. npj 2D Mater. Appl., 2019, 3(1): 50
CrossRef ADS Google scholar
[19]
G. Liu , Q. Zeng , P. Zhu , R. Quhe , P. Lu . Negative Poisson’s ratio in monolayer PdSe2. Comput. Mater. Sci., 2019, 160: 309
CrossRef ADS Google scholar
[20]
A. V. Kuklin , H. Ågren . Quasiparticle electronic structure and optical spectra of single-layer and bilayer PdSe2: Proximity and defect-induced band gap renormalization. Phys. Rev. B, 2019, 99(24): 245114
CrossRef ADS Google scholar
[21]
P. Tangpakonsab , P. Moontragoon , T. Hussain , T. Kaewmaraya . Thermoelectric efficiency of two-dimensional pentagonal-PdSe2 at high temperatures and the role of strain. ACS Appl. Energy Mater., 2022, 5(11): 14522
CrossRef ADS Google scholar
[22]
J. Lin , S. Zuluaga , P. Yu , Z. Liu , S. T. Pantelides , K. Suenaga . Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
CrossRef ADS Google scholar
[23]
X. Xu , J. Robertson , H. Li . Semiconducting few-layer PdSe2 and Pd2Se3: Native point defects and contacts with native metallic Pd17Se15. Phys. Chem. Chem. Phys., 2020, 22(14): 7365
CrossRef ADS Google scholar
[24]
S. S. Naghavi , J. He , Y. Xia , C. Wolverton . Pd2Se3 monolayer: A promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater., 2018, 30(16): 5639
CrossRef ADS Google scholar
[25]
M. Huang , X. Jiang , Y. Zheng , Z. Xu , X. X. Xue , K. Chen , Y. Feng . Novel two-dimensional PdSe phase: A puckered material with excellent electronic and optical properties. Front. Phys., 2022, 17(5): 53504
CrossRef ADS Google scholar
[26]
S. T. Call , D. Y. Zubarev , A. I. Boldyrev . Global minimum structure searches via particle swarm optimization. J. Comput. Chem., 2007, 28(7): 1177
CrossRef ADS Google scholar
[27]
Y.WangJ.LvL.ZhuY.Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
[28]
L. Chen , K. Li , X. Peng , H. Lian , X. Lin , Z. Fu . Isogeometric boundary element analysis for 2D transient heat conduction problem with radial integration method. Comput. Model. Eng. Sci., 2021, 126(1): 125
CrossRef ADS Google scholar
[29]
H. Cheng , Z. Xing , M. Peng . The improved element-free Galerkin method for anisotropic steady-state heat conduction problems. Comput. Model. Eng. Sci., 2022, 132(3): 945
CrossRef ADS Google scholar
[30]
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[31]
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[32]
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[33]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[34]
G. J. Martyna , M. L. Klein , M. Tuckerman . Nosé–Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys., 1992, 97(4): 2635
CrossRef ADS Google scholar
[35]
J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118(18): 8207
CrossRef ADS Google scholar
[36]
A. Togo , F. Oba , I. Tanaka . First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B, 2008, 78(13): 134106
CrossRef ADS Google scholar
[37]
F. Eriksson , E. Fransson , P. Erhart . The Hiphive Package for the extraction of high-order force constants by machine learning. Adv. Theory Simul., 2019, 2(5): 1800184
CrossRef ADS Google scholar
[38]
G. K. H. Madsen , J. Carrete , M. J. Verstraete . BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun., 2018, 231: 140
CrossRef ADS Google scholar
[39]
W. Li , J. Carrete , N. A. Katcho , N. Mingo . ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
CrossRef ADS Google scholar
[40]
A.D. BeckeK.E. Edgecombe, A simple measure of electron localization in atomic and molecular systems, J. Chem. Phys. 92(9), 5397 (1990)
[41]
J. Ma , F. Meng , J. He , Y. Jia , W. Li . Strain-induced ultrahigh electron mobility and thermoelectric figure of merit in monolayer α-Te. ACS Appl. Mater. Interfaces, 2020, 12(39): 43901
CrossRef ADS Google scholar
[42]
L. D. Zhao , S. H. Lo , Y. Zhang , H. Sun , G. Tan , C. Uher , C. Wolverton , V. P. Dravid , M. G. Kanatzidis . Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014, 508(7496): 373
CrossRef ADS Google scholar
[43]
Z. Shu , B. Wang , X. Cui , X. Yan , H. Yan , H. Jia , Y. Cai . High-performance thermoelectric monolayer γ-GeSe and its group-IV monochalcogenide isostructural family. Chem. Eng. J., 2023, 454: 140242
CrossRef ADS Google scholar
[44]
H. Y. Lv , W. J. Lu , D. F. Shao , Y. P. Sun . Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B, 2014, 90(8): 085433
CrossRef ADS Google scholar
[45]
W. Y. Lee , M. S. Kang , N. W. Park , G. S. Kim , A. D. Nguyen , J. W. Choi , Y. G. Yoon , Y. S. Kim , H. W. Jang , E. Saitoh , S. K. Lee . Layer dependence of out-of-plane electrical conductivity and Seebeck coefficient in continuous mono-to multilayer MoS2 films. J. Mater. Chem. A, 2021, 9(47): 26896
CrossRef ADS Google scholar
[46]
J. Bardeen , W. Shockley . Deformation potentials and mobilities in non-polar crystals. Phys. Rev., 1950, 80(1): 72
CrossRef ADS Google scholar
[47]
B. Wang , X. Yan , X. Cui , Y. Cai . First-principles study of the phonon lifetime and low lattice thermal conductivity of monolayer γ-GeSe: A comparative study. ACS Appl. Nano Mater., 2022, 5(10): 15441
CrossRef ADS Google scholar
[48]
N. Wang , M. Li , H. Xiao , X. Zu , L. Qiao . Layered LaCuOSe: A promising anisotropic thermoelectric material. Phys. Rev. Appl., 2020, 13(2): 024038
CrossRef ADS Google scholar
[49]
G. Zhang , Y. W. Zhang . Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C, 2017, 5(31): 7684
CrossRef ADS Google scholar
[50]
G. Qin , Z. Qin , W. Z. Fang , L. C. Zhang , S. Y. Yue , Q. B. Yan , M. Hu , G. Su . Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study. Nanoscale, 2016, 8(21): 11306
CrossRef ADS Google scholar
[51]
Z. Tong , T. Dumitrică , T. Frauenheim . Ultralow thermal conductivity in two-dimensional MoO3. Nano Lett., 2021, 21(10): 4351
CrossRef ADS Google scholar
[52]
V. V. Thanh , D. V. Truong , N. T. Hung . Janus γ-GeSSe monolayer as a high-performance material for photocatalysis and thermoelectricity. ACS Appl. Energy Mater., 2023, 6(2): 910
CrossRef ADS Google scholar
[53]
H. Y. Lv , W. J. Lu , D. F. Shao , H. Y. Lu , Y. P. Sun . Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C, 2016, 4(20): 4538
CrossRef ADS Google scholar
[54]
X. Cui , X. Yan , B. Wang , Y. Cai . Phononic transport in 1T′-MoTe2: Anisotropic structure with an isotropic lattice thermal conductivity. Appl. Surf. Sci., 2023, 608: 155238
CrossRef ADS Google scholar
[55]
Y. Su , C. Deng , J. Liu , X. Zheng , Y. Wei , Y. Chen , W. Yu , X. Guo , W. Cai , G. Peng , H. Huang , X. Zhang . Highly in-plane anisotropy of thermal transport in suspended ternary chalcogenide Ta2NiS5. Nano Res., 2022, 15(7): 6601
CrossRef ADS Google scholar
[56]
X. Yan , B. Wang , Y. Hai , D. R. Kripalani , Q. Ke , Y. Cai . Phonon anharmonicity and thermal conductivity of two-dimensional van der Waals materials: A review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117004
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1354-7 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1354-7.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 22022309) and the Natural Science Foundation of Guangdong Province, China (No. 2021A1515010024), the University of Macau (Nos. SRG2019-00179-IAPME and MYRG2020-00075-IAPME), and the Science and Technology Development Fund from Macau SAR (No. FDCT-0163/2019/A3). This work was performed in part at the High-Performance Computing Cluster (HPCC) which is supported by Information and Communication Technology Office (ICTO) of the University of Macau.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5757 KB)

Accesses

Citations

Detail

Sections
Recommended

/