Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material
Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang
Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material
Two-dimensional (2D) heterostructures have shown great potential in advanced photovoltaics due to their restrained carrier recombination, prolonged exciton lifetime and improved light absorption. Herein, a 2D polarized heterostructure is constructed between Janus MoSSe and MoTe2 monolayers and is systematically investigated via first-principles calculations. Electronically, the valence band and conduction band of the MoSSe−MoTe2 (MoSeS−MoTe2) are contributed by MoTe2 and MoSSe layers, respectively, and its bandgap is 0.71 (0.03) eV. A built-in electric field pointing from MoTe2 to MoSSe layers appears at the interface of heterostructures due to the interlayer carrier redistribution. Notably, the band alignment and built-in electric field make it a direct z-scheme heterostructure, benefiting the separation of photogenerated electron-hole pairs. Besides, the electronic structure and interlayer carrier reconstruction can be readily controlled by reversing the electric polarization of the MoSSe layer. Furthermore, the light absorption of the MoSSe/MoTe2 heterostructure is also improved in comparison with the separated monolayers. Consequently, in this work, a new z-scheme polarized heterostructure with polarization-controllable optoelectronic properties is designed for highly efficient optoelectronics.
MoSSe/MoTe2 / photovoltaics / ferroelectric heterostructure
[1] |
S. Das , D. Pandey , J. Thomas , T. Roy . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
CrossRef
ADS
Google scholar
|
[2] |
Q. Li , X. Li , S. Wageh , A. A. Al‐Ghamdi , J. Yu . CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater., 2015, 5(14): 1500010
CrossRef
ADS
Google scholar
|
[3] |
C. Han , Q. Sun , Z. Li , S. X. Dou . Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater., 2016, 6(15): 1600498
CrossRef
ADS
Google scholar
|
[4] |
Z. Liu , S. P. Lau , F. Yan . Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing. Chem. Soc. Rev., 2015, 44(15): 5638
CrossRef
ADS
Google scholar
|
[5] |
Z. Li , B. Li , X. Wu , S. A. Sheppard , S. Zhang , D. Gao , N. J. Long , Z. Zhu . Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376(6591): 416
CrossRef
ADS
Google scholar
|
[6] |
J. Ren , P. Bi , J. Zhang , J. Liu , J. Wang , Y. Xu , Z. Wei , S. Zhang , J. Hou . Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8): nwab031
CrossRef
ADS
Google scholar
|
[7] |
C. Tang , L. Zhang , C. Zhang , J. MacLeod , K. K. Ostrikov , A. Du . Highly stable two-dimensional gold selenide with large in-plane anisotropy and ultrahigh carrier mobility. Nanoscale Horiz., 2020, 5(2): 366
CrossRef
ADS
Google scholar
|
[8] |
C. H. Lee , G. H. Lee , A. M. Van Der Zande , W. Chen , Y. Li , M. Han , X. Cui , G. Arefe , C. Nuckolls , T. F. Heinz , J. Guo , J. Hone , P. Kim . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
CrossRef
ADS
Google scholar
|
[9] |
X.GuW.CuiH.LiZ.WuZ.ZengS.T. LeeH.ZhangB.Sun, A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells, Adv. Energy Mater. 3(10), 1262 (2013)
|
[10] |
C. Tang , F. Ma , C. Zhang , Y. Jiao , S. K. Matta , K. Ostrikov , A. Du . 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility. J. Mater. Chem. C, 2019, 7(6): 1651
CrossRef
ADS
Google scholar
|
[11] |
J. A. Wilson , A. Yoffe . The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
CrossRef
ADS
Google scholar
|
[12] |
A. Splendiani , L. Sun , Y. Zhang , T. Li , J. Kim , C. Y. Chim , G. Galli , F. Wang . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
CrossRef
ADS
Google scholar
|
[13] |
C. Li , Q. Cao , F. Wang , Y. Xiao , Y. Li , J. J. Delaunay , H. Zhu . Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev., 2018, 47(13): 4981
CrossRef
ADS
Google scholar
|
[14] |
Y.KimS.LeeJ.G. SongK.Y. KoW.J. WooS.W. LeeM.ParkH.LeeZ.LeeH.ChoiW.H. KimJ.ParkH.Kim, 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
|
[15] |
L. Britnell , R. M. Ribeiro , A. Eckmann , R. Jalil , B. D. Belle , A. Mishchenko , Y. J. Kim , R. V. Gorbachev , T. Georgiou , S. V. Morozov , A. N. Grigorenko , A. K. Geim , C. Casiraghi , A. H. C. Neto , K. S. Novoselov . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
CrossRef
ADS
Google scholar
|
[16] |
M. Baranowski , A. Surrente , L. Klopotowski , J. M. Urban , N. Zhang , D. K. Maude , K. Wiwatowski , S. Mackowski , Y. C. Kung , D. Dumcenco , A. Kis , P. Plochocka . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett., 2017, 17(10): 6360
CrossRef
ADS
Google scholar
|
[17] |
X.ZhengY.WeiJ.LiuS.WangJ.ShiH.YangG.PengC.DengW.LuoY.ZhaoY.LiK.SunW.WanH.XieY.GaoX.ZhangH.Huang, A homogeneous p−n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices, Nanoscale 11(28), 13469 (2019)
|
[18] |
K. Zhang , T. Zhang , G. Cheng , T. Li , S. Wang , W. Wei , X. Zhou , W. Yu , Y. Sun , P. Wang , D. Zhang , C. Zeng , X. Wang , W. Hu , H. J. Fan , G. Shen , X. Chen , X. Duan , K. Chang , N. Dai . Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
CrossRef
ADS
Google scholar
|
[19] |
T.AkamatsuT.IdeueL.ZhouY.DongS.KitamuraM.YoshiiD.YangM.OngaY.NakagawaK.WatanabeT.TaniguchiJ.LaurienzoJ.HuangZ.YeT.MorimotoH.YuanY.Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
|
[20] |
K. Zhang , Y. Guo , Q. Ji , A. Y. Lu , C. Su , H. Wang , A. A. Puretzky , D. B. Geohegan , X. Qian , S. Fang , E. Kaxiras , J. Kong , S. Huang . Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. J. Am. Chem. Soc., 2020, 142(41): 17499
CrossRef
ADS
Google scholar
|
[21] |
J. Zhang , S. Jia , I. Kholmanov , L. Dong , D. Er , W. Chen , H. Guo , Z. Jin , V. B. Shenoy , L. Shi , J. Lou . Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
CrossRef
ADS
Google scholar
|
[22] |
X.TangL.Kou, 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022) (b)
|
[23] |
D. Wijethunge , L. Zhang , C. Tang , A. Du . Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
CrossRef
ADS
Google scholar
|
[24] |
Y. Wang , F. Wang , Z. Wang , J. Wang , J. Yang , Y. Yao , N. Li , M. G. Sendeku , X. Zhan , C. Shan . Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res., 2021, 14: 4328
CrossRef
ADS
Google scholar
|
[25] |
C. Xia , W. Xiong , J. Du , T. Wang , Y. Peng , J. Li . Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B, 2018, 98(16): 165424
CrossRef
ADS
Google scholar
|
[26] |
M. J. Varjovi , M. Yagmurcukardes , F. M. Peeters , E. Durgun . Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te. Phys. Rev. B, 2021, 103(19): 195438
CrossRef
ADS
Google scholar
|
[27] |
X. Wang , P. Wang , J. Wang , W. Hu , X. Zhou , N. Guo , H. Huang , S. Sun , H. Shen , T. Lin , M. Tang , L. Liao , A. Jiang , J. Sun , X. Meng , X. Chen , W. Lu , J. Chu . Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater., 2015, 27(42): 6575
CrossRef
ADS
Google scholar
|
[28] |
W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
CrossRef
ADS
Google scholar
|
[29] |
M. Absor , A. Ulil , I. Santoso , H. Harsojo , K. Abraha , H. Kotaka , F. Ishii , M. Saito . Polarity tuning of spin–orbit-induced spin splitting in two-dimensional transition metal dichalcogenides. J. Appl. Phys., 2017, 122(15): 153905
CrossRef
ADS
Google scholar
|
[30] |
Y. Wang , J. Xiao , H. Zhu , Y. Li , Y. Alsaid , K. Y. Fong , Y. Zhou , S. Wang , W. Shi , Y. Wang , A. Zettl , E. J. Reed , X. Zhang . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
CrossRef
ADS
Google scholar
|
[31] |
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef
ADS
Google scholar
|
[32] |
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[33] |
G. Kresse , J. Hafner . Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
CrossRef
ADS
Google scholar
|
[34] |
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef
ADS
Google scholar
|
[35] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[36] |
H. J. Monkhorst , J. D. Pack . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef
ADS
Google scholar
|
[37] |
S.GrimmeJ.AntonyS.EhrlichH.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
[38] |
V.WangN.XuJ.C. LiuG.TangW.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
|
[39] |
C. Ruppert , O. B. Aslan , T. F. Heinz . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
CrossRef
ADS
Google scholar
|
[40] |
A. Y. Lu , H. Zhu , J. Xiao , C. P. Chuu , Y. Han , M. H. Chiu , C. C. Cheng , C. W. Yang , K. H. Wei , Y. Yang , Y. Wang , D. Sokaras , D. Nordlund , P. Yang , D. A. Muller , M. Y. Chou , X. Zhang , L. J. Li . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
CrossRef
ADS
Google scholar
|
[41] |
C. Zhang , Y. Jiao , T. He , S. Bottle , T. Frauenheim , A. Du . Predicting two-dimensional C3B/C3N van der Waals p–n heterojunction with strong interlayer electron coupling and enhanced photocurrent. J. Phys. Chem. Lett., 2018, 9(4): 858
CrossRef
ADS
Google scholar
|
[42] |
C. Tang , L. Zhang , A. Du . Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C, 2020, 8(42): 14948
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |