
Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material
Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 13201.
Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material
Two-dimensional (2D) heterostructures have shown great potential in advanced photovoltaics due to their restrained carrier recombination, prolonged exciton lifetime and improved light absorption. Herein, a 2D polarized heterostructure is constructed between Janus MoSSe and MoTe2 monolayers and is systematically investigated via first-principles calculations. Electronically, the valence band and conduction band of the MoSSe−MoTe2 (MoSeS−MoTe2) are contributed by MoTe2 and MoSSe layers, respectively, and its bandgap is 0.71 (0.03) eV. A built-in electric field pointing from MoTe2 to MoSSe layers appears at the interface of heterostructures due to the interlayer carrier redistribution. Notably, the band alignment and built-in electric field make it a direct z-scheme heterostructure, benefiting the separation of photogenerated electron-hole pairs. Besides, the electronic structure and interlayer carrier reconstruction can be readily controlled by reversing the electric polarization of the MoSSe layer. Furthermore, the light absorption of the MoSSe/MoTe2 heterostructure is also improved in comparison with the separated monolayers. Consequently, in this work, a new z-scheme polarized heterostructure with polarization-controllable optoelectronic properties is designed for highly efficient optoelectronics.
MoSSe/MoTe2 / photovoltaics / ferroelectric heterostructure
Tab.1 Lattice constants (Å) and bandgaps (eV) (HSE functional) for MoSSe and MoTe2 monolayer and MoSSe−MoTe2 and MoSeS−MoTe2 heterostructures. Formation energy (meV) and interlayer distance (Å) of heterostructures. |
Fig.2 (a, b) Band structures of MoSSe and MoTe2 monolayers. (c) Electrostatic potential of MoSSe and MoTe2 monolayers, respectively. The dipole correction is considered in these calculations. (d) Diagram illustration of band alignment of MoSSe−MoTe2 and MoSeS−MoTe2 heterostructures with interface of Se/Te and S/Te, respectively. Φx (x = S, Se and Te) represent the work functions estimated in (c) with x atomic surface. The potentials of valence (VB) and conduction (CB) bands are marked in the figure. (e, f) Orbital-resolved band structures and charge densities (iso-value of 0.012 e/Å3) of VB and CB of MoSSe−MoTe2 and MoSeS−MoTe2 heterostructures, respectively. Red and Blue lines represent the contribution of orbitals from MoSSe and MoTe2 layers, respectively. |
[1] |
S. Das , D. Pandey , J. Thomas , T. Roy . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
CrossRef
ADS
Google scholar
|
[2] |
Q. Li , X. Li , S. Wageh , A. A. Al‐Ghamdi , J. Yu . CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater., 2015, 5(14): 1500010
CrossRef
ADS
Google scholar
|
[3] |
C. Han , Q. Sun , Z. Li , S. X. Dou . Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater., 2016, 6(15): 1600498
CrossRef
ADS
Google scholar
|
[4] |
Z. Liu , S. P. Lau , F. Yan . Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing. Chem. Soc. Rev., 2015, 44(15): 5638
CrossRef
ADS
Google scholar
|
[5] |
Z. Li , B. Li , X. Wu , S. A. Sheppard , S. Zhang , D. Gao , N. J. Long , Z. Zhu . Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376(6591): 416
CrossRef
ADS
Google scholar
|
[6] |
J. Ren , P. Bi , J. Zhang , J. Liu , J. Wang , Y. Xu , Z. Wei , S. Zhang , J. Hou . Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8): nwab031
CrossRef
ADS
Google scholar
|
[7] |
C. Tang , L. Zhang , C. Zhang , J. MacLeod , K. K. Ostrikov , A. Du . Highly stable two-dimensional gold selenide with large in-plane anisotropy and ultrahigh carrier mobility. Nanoscale Horiz., 2020, 5(2): 366
CrossRef
ADS
Google scholar
|
[8] |
C. H. Lee , G. H. Lee , A. M. Van Der Zande , W. Chen , Y. Li , M. Han , X. Cui , G. Arefe , C. Nuckolls , T. F. Heinz , J. Guo , J. Hone , P. Kim . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
CrossRef
ADS
Google scholar
|
[9] |
X.GuW.CuiH.LiZ.WuZ.ZengS.T. LeeH.ZhangB.Sun, A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells, Adv. Energy Mater. 3(10), 1262 (2013)
|
[10] |
C. Tang , F. Ma , C. Zhang , Y. Jiao , S. K. Matta , K. Ostrikov , A. Du . 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility. J. Mater. Chem. C, 2019, 7(6): 1651
CrossRef
ADS
Google scholar
|
[11] |
J. A. Wilson , A. Yoffe . The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
CrossRef
ADS
Google scholar
|
[12] |
A. Splendiani , L. Sun , Y. Zhang , T. Li , J. Kim , C. Y. Chim , G. Galli , F. Wang . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
CrossRef
ADS
Google scholar
|
[13] |
C. Li , Q. Cao , F. Wang , Y. Xiao , Y. Li , J. J. Delaunay , H. Zhu . Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev., 2018, 47(13): 4981
CrossRef
ADS
Google scholar
|
[14] |
Y.KimS.LeeJ.G. SongK.Y. KoW.J. WooS.W. LeeM.ParkH.LeeZ.LeeH.ChoiW.H. KimJ.ParkH.Kim, 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
|
[15] |
L. Britnell , R. M. Ribeiro , A. Eckmann , R. Jalil , B. D. Belle , A. Mishchenko , Y. J. Kim , R. V. Gorbachev , T. Georgiou , S. V. Morozov , A. N. Grigorenko , A. K. Geim , C. Casiraghi , A. H. C. Neto , K. S. Novoselov . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
CrossRef
ADS
Google scholar
|
[16] |
M. Baranowski , A. Surrente , L. Klopotowski , J. M. Urban , N. Zhang , D. K. Maude , K. Wiwatowski , S. Mackowski , Y. C. Kung , D. Dumcenco , A. Kis , P. Plochocka . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett., 2017, 17(10): 6360
CrossRef
ADS
Google scholar
|
[17] |
X.ZhengY.WeiJ.LiuS.WangJ.ShiH.YangG.PengC.DengW.LuoY.ZhaoY.LiK.SunW.WanH.XieY.GaoX.ZhangH.Huang, A homogeneous p−n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices, Nanoscale 11(28), 13469 (2019)
|
[18] |
K. Zhang , T. Zhang , G. Cheng , T. Li , S. Wang , W. Wei , X. Zhou , W. Yu , Y. Sun , P. Wang , D. Zhang , C. Zeng , X. Wang , W. Hu , H. J. Fan , G. Shen , X. Chen , X. Duan , K. Chang , N. Dai . Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
CrossRef
ADS
Google scholar
|
[19] |
T.AkamatsuT.IdeueL.ZhouY.DongS.KitamuraM.YoshiiD.YangM.OngaY.NakagawaK.WatanabeT.TaniguchiJ.LaurienzoJ.HuangZ.YeT.MorimotoH.YuanY.Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
|
[20] |
K. Zhang , Y. Guo , Q. Ji , A. Y. Lu , C. Su , H. Wang , A. A. Puretzky , D. B. Geohegan , X. Qian , S. Fang , E. Kaxiras , J. Kong , S. Huang . Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. J. Am. Chem. Soc., 2020, 142(41): 17499
CrossRef
ADS
Google scholar
|
[21] |
J. Zhang , S. Jia , I. Kholmanov , L. Dong , D. Er , W. Chen , H. Guo , Z. Jin , V. B. Shenoy , L. Shi , J. Lou . Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
CrossRef
ADS
Google scholar
|
[22] |
X.TangL.Kou, 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022) (b)
|
[23] |
D. Wijethunge , L. Zhang , C. Tang , A. Du . Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
CrossRef
ADS
Google scholar
|
[24] |
Y. Wang , F. Wang , Z. Wang , J. Wang , J. Yang , Y. Yao , N. Li , M. G. Sendeku , X. Zhan , C. Shan . Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res., 2021, 14: 4328
CrossRef
ADS
Google scholar
|
[25] |
C. Xia , W. Xiong , J. Du , T. Wang , Y. Peng , J. Li . Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B, 2018, 98(16): 165424
CrossRef
ADS
Google scholar
|
[26] |
M. J. Varjovi , M. Yagmurcukardes , F. M. Peeters , E. Durgun . Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te. Phys. Rev. B, 2021, 103(19): 195438
CrossRef
ADS
Google scholar
|
[27] |
X. Wang , P. Wang , J. Wang , W. Hu , X. Zhou , N. Guo , H. Huang , S. Sun , H. Shen , T. Lin , M. Tang , L. Liao , A. Jiang , J. Sun , X. Meng , X. Chen , W. Lu , J. Chu . Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater., 2015, 27(42): 6575
CrossRef
ADS
Google scholar
|
[28] |
W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
CrossRef
ADS
Google scholar
|
[29] |
M. Absor , A. Ulil , I. Santoso , H. Harsojo , K. Abraha , H. Kotaka , F. Ishii , M. Saito . Polarity tuning of spin–orbit-induced spin splitting in two-dimensional transition metal dichalcogenides. J. Appl. Phys., 2017, 122(15): 153905
CrossRef
ADS
Google scholar
|
[30] |
Y. Wang , J. Xiao , H. Zhu , Y. Li , Y. Alsaid , K. Y. Fong , Y. Zhou , S. Wang , W. Shi , Y. Wang , A. Zettl , E. J. Reed , X. Zhang . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
CrossRef
ADS
Google scholar
|
[31] |
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef
ADS
Google scholar
|
[32] |
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[33] |
G. Kresse , J. Hafner . Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
CrossRef
ADS
Google scholar
|
[34] |
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef
ADS
Google scholar
|
[35] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[36] |
H. J. Monkhorst , J. D. Pack . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef
ADS
Google scholar
|
[37] |
S.GrimmeJ.AntonyS.EhrlichH.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
|
[38] |
V.WangN.XuJ.C. LiuG.TangW.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
|
[39] |
C. Ruppert , O. B. Aslan , T. F. Heinz . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
CrossRef
ADS
Google scholar
|
[40] |
A. Y. Lu , H. Zhu , J. Xiao , C. P. Chuu , Y. Han , M. H. Chiu , C. C. Cheng , C. W. Yang , K. H. Wei , Y. Yang , Y. Wang , D. Sokaras , D. Nordlund , P. Yang , D. A. Muller , M. Y. Chou , X. Zhang , L. J. Li . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
CrossRef
ADS
Google scholar
|
[41] |
C. Zhang , Y. Jiao , T. He , S. Bottle , T. Frauenheim , A. Du . Predicting two-dimensional C3B/C3N van der Waals p–n heterojunction with strong interlayer electron coupling and enhanced photocurrent. J. Phys. Chem. Lett., 2018, 9(4): 858
CrossRef
ADS
Google scholar
|
[42] |
C. Tang , L. Zhang , A. Du . Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C, 2020, 8(42): 14948
CrossRef
ADS
Google scholar
|
Supplementary files
fop-21330-OF-tangcheng_suppl_1 (943 KB)
Part of a collection:
/
〈 |
|
〉 |