Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material

Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang

PDF(4939 KB)
PDF(4939 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 13201. DOI: 10.1007/s11467-023-1330-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material

Author information +
History +

Abstract

Two-dimensional (2D) heterostructures have shown great potential in advanced photovoltaics due to their restrained carrier recombination, prolonged exciton lifetime and improved light absorption. Herein, a 2D polarized heterostructure is constructed between Janus MoSSe and MoTe2 monolayers and is systematically investigated via first-principles calculations. Electronically, the valence band and conduction band of the MoSSe−MoTe2 (MoSeS−MoTe2) are contributed by MoTe2 and MoSSe layers, respectively, and its bandgap is 0.71 (0.03) eV. A built-in electric field pointing from MoTe2 to MoSSe layers appears at the interface of heterostructures due to the interlayer carrier redistribution. Notably, the band alignment and built-in electric field make it a direct z-scheme heterostructure, benefiting the separation of photogenerated electron-hole pairs. Besides, the electronic structure and interlayer carrier reconstruction can be readily controlled by reversing the electric polarization of the MoSSe layer. Furthermore, the light absorption of the MoSSe/MoTe2 heterostructure is also improved in comparison with the separated monolayers. Consequently, in this work, a new z-scheme polarized heterostructure with polarization-controllable optoelectronic properties is designed for highly efficient optoelectronics.

Graphical abstract

Keywords

MoSSe/MoTe2 / photovoltaics / ferroelectric heterostructure

Cite this article

Download citation ▾
Fahhad Alsubaie, Munirah Muraykhan, Lei Zhang, Dongchen Qi, Ting Liao, Liangzhi Kou, Aijun Du, Cheng Tang. Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material. Front. Phys., 2024, 19(1): 13201 https://doi.org/10.1007/s11467-023-1330-2

References

[1]
S. Das , D. Pandey , J. Thomas , T. Roy . The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater., 2019, 31(1): 1802722
CrossRef ADS Google scholar
[2]
Q. Li , X. Li , S. Wageh , A. A. Al‐Ghamdi , J. Yu . CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater., 2015, 5(14): 1500010
CrossRef ADS Google scholar
[3]
C. Han , Q. Sun , Z. Li , S. X. Dou . Thermoelectric enhancement of different kinds of metal chalcogenides. Adv. Energy Mater., 2016, 6(15): 1600498
CrossRef ADS Google scholar
[4]
Z. Liu , S. P. Lau , F. Yan . Functionalized graphene and other two-dimensional materials for photovoltaic devices: Device design and processing. Chem. Soc. Rev., 2015, 44(15): 5638
CrossRef ADS Google scholar
[5]
Z. Li , B. Li , X. Wu , S. A. Sheppard , S. Zhang , D. Gao , N. J. Long , Z. Zhu . Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376(6591): 416
CrossRef ADS Google scholar
[6]
J. Ren , P. Bi , J. Zhang , J. Liu , J. Wang , Y. Xu , Z. Wei , S. Zhang , J. Hou . Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. Natl. Sci. Rev., 2021, 8(8): nwab031
CrossRef ADS Google scholar
[7]
C. Tang , L. Zhang , C. Zhang , J. MacLeod , K. K. Ostrikov , A. Du . Highly stable two-dimensional gold selenide with large in-plane anisotropy and ultrahigh carrier mobility. Nanoscale Horiz., 2020, 5(2): 366
CrossRef ADS Google scholar
[8]
C. H. Lee , G. H. Lee , A. M. Van Der Zande , W. Chen , Y. Li , M. Han , X. Cui , G. Arefe , C. Nuckolls , T. F. Heinz , J. Guo , J. Hone , P. Kim . Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol., 2014, 9(9): 676
CrossRef ADS Google scholar
[9]
X.GuW.CuiH.LiZ.WuZ.ZengS.T. LeeH.ZhangB.Sun, A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells, Adv. Energy Mater. 3(10), 1262 (2013)
[10]
C. Tang , F. Ma , C. Zhang , Y. Jiao , S. K. Matta , K. Ostrikov , A. Du . 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility. J. Mater. Chem. C, 2019, 7(6): 1651
CrossRef ADS Google scholar
[11]
J. A. Wilson , A. Yoffe . The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys., 1969, 18(73): 193
CrossRef ADS Google scholar
[12]
A. Splendiani , L. Sun , Y. Zhang , T. Li , J. Kim , C. Y. Chim , G. Galli , F. Wang . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
CrossRef ADS Google scholar
[13]
C. Li , Q. Cao , F. Wang , Y. Xiao , Y. Li , J. J. Delaunay , H. Zhu . Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev., 2018, 47(13): 4981
CrossRef ADS Google scholar
[14]
Y.KimS.LeeJ.G. SongK.Y. KoW.J. WooS.W. LeeM.ParkH.LeeZ.LeeH.ChoiW.H. KimJ.ParkH.Kim, 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor, Adv. Funct. Mater. 30(43), 2003360 (2020)
[15]
L. Britnell , R. M. Ribeiro , A. Eckmann , R. Jalil , B. D. Belle , A. Mishchenko , Y. J. Kim , R. V. Gorbachev , T. Georgiou , S. V. Morozov , A. N. Grigorenko , A. K. Geim , C. Casiraghi , A. H. C. Neto , K. S. Novoselov . Strong light−matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
CrossRef ADS Google scholar
[16]
M. Baranowski , A. Surrente , L. Klopotowski , J. M. Urban , N. Zhang , D. K. Maude , K. Wiwatowski , S. Mackowski , Y. C. Kung , D. Dumcenco , A. Kis , P. Plochocka . Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett., 2017, 17(10): 6360
CrossRef ADS Google scholar
[17]
X.ZhengY.WeiJ.LiuS.WangJ.ShiH.YangG.PengC.DengW.LuoY.ZhaoY.LiK.SunW.WanH.XieY.GaoX.ZhangH.Huang, A homogeneous p−n junction diode by selective doping of few layer MoSe2 using ultraviolet ozone for high-performance photovoltaic devices, Nanoscale 11(28), 13469 (2019)
[18]
K. Zhang , T. Zhang , G. Cheng , T. Li , S. Wang , W. Wei , X. Zhou , W. Yu , Y. Sun , P. Wang , D. Zhang , C. Zeng , X. Wang , W. Hu , H. J. Fan , G. Shen , X. Chen , X. Duan , K. Chang , N. Dai . Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano, 2016, 10(3): 3852
CrossRef ADS Google scholar
[19]
T.AkamatsuT.IdeueL.ZhouY.DongS.KitamuraM.YoshiiD.YangM.OngaY.NakagawaK.WatanabeT.TaniguchiJ.LaurienzoJ.HuangZ.YeT.MorimotoH.YuanY.Iwasa, A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect, Science 372(6537), 68 (2021)
[20]
K. Zhang , Y. Guo , Q. Ji , A. Y. Lu , C. Su , H. Wang , A. A. Puretzky , D. B. Geohegan , X. Qian , S. Fang , E. Kaxiras , J. Kong , S. Huang . Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. J. Am. Chem. Soc., 2020, 142(41): 17499
CrossRef ADS Google scholar
[21]
J. Zhang , S. Jia , I. Kholmanov , L. Dong , D. Er , W. Chen , H. Guo , Z. Jin , V. B. Shenoy , L. Shi , J. Lou . Janus monolayer transition-metal dichalcogenides. ACS Nano, 2017, 11(8): 8192
CrossRef ADS Google scholar
[22]
X.TangL.Kou, 2D Janus transition metal dichalcogenides: Properties and applications, Phys. Status Solidi B 259(4), 2100562 (2022) (b)
[23]
D. Wijethunge , L. Zhang , C. Tang , A. Du . Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys., 2020, 15(6): 63504
CrossRef ADS Google scholar
[24]
Y. Wang , F. Wang , Z. Wang , J. Wang , J. Yang , Y. Yao , N. Li , M. G. Sendeku , X. Zhan , C. Shan . Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p–n junction. Nano Res., 2021, 14: 4328
CrossRef ADS Google scholar
[25]
C. Xia , W. Xiong , J. Du , T. Wang , Y. Peng , J. Li . Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides. Phys. Rev. B, 2018, 98(16): 165424
CrossRef ADS Google scholar
[26]
M. J. Varjovi , M. Yagmurcukardes , F. M. Peeters , E. Durgun . Janus two-dimensional transition metal dichalcogenide oxides: First-principles investigation of WXO monolayers with X = S, Se, and Te. Phys. Rev. B, 2021, 103(19): 195438
CrossRef ADS Google scholar
[27]
X. Wang , P. Wang , J. Wang , W. Hu , X. Zhou , N. Guo , H. Huang , S. Sun , H. Shen , T. Lin , M. Tang , L. Liao , A. Jiang , J. Sun , X. Meng , X. Chen , W. Lu , J. Chu . Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater., 2015, 27(42): 6575
CrossRef ADS Google scholar
[28]
W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
CrossRef ADS Google scholar
[29]
M. Absor , A. Ulil , I. Santoso , H. Harsojo , K. Abraha , H. Kotaka , F. Ishii , M. Saito . Polarity tuning of spin–orbit-induced spin splitting in two-dimensional transition metal dichalcogenides. J. Appl. Phys., 2017, 122(15): 153905
CrossRef ADS Google scholar
[30]
Y. Wang , J. Xiao , H. Zhu , Y. Li , Y. Alsaid , K. Y. Fong , Y. Zhou , S. Wang , W. Shi , Y. Wang , A. Zettl , E. J. Reed , X. Zhang . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550(7677): 487
CrossRef ADS Google scholar
[31]
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[32]
G. Kresse , J. Furthmüller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[33]
G. Kresse , J. Hafner . Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 1994, 49(20): 14251
CrossRef ADS Google scholar
[34]
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[35]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[36]
H. J. Monkhorst , J. D. Pack . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[37]
S.GrimmeJ.AntonyS.EhrlichH.Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H−Pu, J. Chem. Phys. 132(15), 154104 (2010)
[38]
V.WangN.XuJ.C. LiuG.TangW.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun. 267, 108033 (2021)
[39]
C. Ruppert , O. B. Aslan , T. F. Heinz . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
CrossRef ADS Google scholar
[40]
A. Y. Lu , H. Zhu , J. Xiao , C. P. Chuu , Y. Han , M. H. Chiu , C. C. Cheng , C. W. Yang , K. H. Wei , Y. Yang , Y. Wang , D. Sokaras , D. Nordlund , P. Yang , D. A. Muller , M. Y. Chou , X. Zhang , L. J. Li . Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol., 2017, 12(8): 744
CrossRef ADS Google scholar
[41]
C. Zhang , Y. Jiao , T. He , S. Bottle , T. Frauenheim , A. Du . Predicting two-dimensional C3B/C3N van der Waals p–n heterojunction with strong interlayer electron coupling and enhanced photocurrent. J. Phys. Chem. Lett., 2018, 9(4): 858
CrossRef ADS Google scholar
[42]
C. Tang , L. Zhang , A. Du . Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C, 2020, 8(42): 14948
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1330-2 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1330-2.

Acknowledgements

The authors acknowledge grants of high-performance computing resources provided by NCI National Facility and the Pawsey Supercomputing Centre through the National Computational Merit Allocation Scheme supported by Queensland University of Technology, the Australian Government and the Government of Western Australia. A.D. also greatly appreciates the financial support of the Australian Research Council under Discovery Projects DP210100721 and DP210100331.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4939 KB)

Accesses

Citations

Detail

Sections
Recommended

/