High-sensitive two-dimensional PbI2 photodetector with ultrashort channel

Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang

PDF(7140 KB)
PDF(7140 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63305. DOI: 10.1007/s11467-023-1323-1
RESEARCH ARTICLE
RESEARCH ARTICLE

High-sensitive two-dimensional PbI2 photodetector with ultrashort channel

Author information +
History +

Abstract

Photodetectors based on two-dimensional (2D) semiconductors have attracted many research interests owing to their excellent optoelectronic characteristics and application potential for highly integrated applications. However, the unique morphology of 2D materials also restricts the further improvement of the device performance, as the carrier transport is very susceptible to intrinsic and extrinsic environment of the materials. Here, we report the highest responsivity (172 A/W) achieved so far for a PbI2-based photodetector at room temperature, which is an order of magnitude higher than previously reported. Thermal scanning probe lithography (t-SPL) was used to pattern electrodes to realize the ultrashort channel (~60 nm) in the devices. The shortening of the channel length greatly reduces the probability of the photo-generated carriers being scattered during the transport process, which increases the photocurrent density and thus the responsivity. Our work shows that the combination of emerging processing technologies and 2D materials is an effective route to shrink device size and improve device performance.

Graphical abstract

Keywords

two-dimensional photodetectors / carrier scattering / ultrashort channel / thermal scanning probe lithography / PbI2 nanosheets

Cite this article

Download citation ▾
Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel. Front. Phys., 2023, 18(6): 63305 https://doi.org/10.1007/s11467-023-1323-1

References

[1]
G. Konstantatos. Current status and technological prospect of photodetectors based on two-dimensional materials. Nat. Commun., 2018, 9(1): 5266
CrossRef ADS Google scholar
[2]
W. Wu, X. Wang, X. Han, Z. Yang, G. Gao, Y. Zhang, J. Hu, Y. Tan, A. Pan, C. Pan. Flexible photodetector arrays based on patterned CH3NH3PbI3−xClx perovskite film for real‐time photosensing and imaging. Adv. Mater., 2019, 31(3): 1805913
CrossRef ADS Google scholar
[3]
H.LinB. C. P. SturmbergK.T. Lin Y.YangX. ZhengT.K. ChongC.M. de SterkeB.Jia, A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light, Nat. Photonics 13(4), 270 (2019)
[4]
M.ShkirI. S. YahiaV.GaneshY.BitlaI.M. AshrafA.KaushikS.AlFaify, A facile synthesis of Au-nanoparticles decorated PbI2 single crystalline nanosheets for optoelectronic device applications, Sci. Rep. 8(1), 13806 (2018)
[5]
Q. Fu, X. Wang, F. Liu, Y. Dong, Z. Liu, S. Zheng, A. Chaturvedi, J. Zhou, P. Hu, Z. Zhu, F. Bo, Y. Long, Z. Liu. Ultrathin Ruddlesden−Popper perovskite heterojunction for sensitive photodetection. Small, 2019, 15(39): 1902890
CrossRef ADS Google scholar
[6]
X. Zhang, Z. Li, T. Yan, L. Su, X. Fang. Phase-modulated multidimensional perovskites for high-sensitivity self-powered UV photodetectors. Small, 2023, 19(9): 2206310
CrossRef ADS Google scholar
[7]
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol., 2013, 8(7): 497
CrossRef ADS Google scholar
[8]
W. Guo, Z. Dong, Y. Xu, C. Liu, D. Wei, L. Zhang, X. Shi, C. Guo, H. Xu, G. Chen, L. Wang, K. Zhang, X. Chen, W. Lu. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices. Adv. Sci. (Weinh.), 2020, 7(5): 1902699
CrossRef ADS Google scholar
[9]
Y. Cai, J. Yang, F. Wang, S. Li, Y. Wang, X. Zhan, F. Wang, R. Cheng, Z. Wang, J. He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
CrossRef ADS Google scholar
[10]
S.LiY.Zhang W.YangH. LiuX.Fang, 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors, Adv. Mater. 32(7), 1905443 (2020)
[11]
D. Kufer, G. Konstantatos. Highly sensitive, encapsulated MoS2 photodetector with gate controllable gain and speed. Nano Lett., 2015, 15(11): 7307
CrossRef ADS Google scholar
[12]
S. G. Menabde, H. Cho, N. Park. Interface defect-assisted phonon scattering of hot carriers in graphene. Phys. Rev. B, 2017, 96(7): 075426
CrossRef ADS Google scholar
[13]
J. Gao, A. M. Rao, H. Li, J. Zhang, O. Chen. Carrier transport dynamics in high speed black phosphorus photodetectors. ACS Photonics, 2018, 5(4): 1412
CrossRef ADS Google scholar
[14]
Y. Tian, Y. Cheng, J. Huang, S. Zhang, H. Dong, G. Wang, J. Chen, J. Wu, Z. Yin, X. Zhang. Epitaxial growth of large area ZrS2 2D semiconductor films on sapphire for optoelectronics. Nano Res., 2022, 15(7): 6628
CrossRef ADS Google scholar
[15]
S. J. Kim, B. Park, S. H. Noh, H. S. Yoon, J. Oh, S. Yoo, K. Kang, B. Han, S. C. Jun. Carrier scattering in quasi-free standing graphene on hexagonal boron nitride. Nanoscale, 2017, 9(41): 15934
CrossRef ADS Google scholar
[16]
J. H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, M. Ishigami. Charged-impurity scattering in graphene. Nat. Phys., 2008, 4(5): 377
CrossRef ADS Google scholar
[17]
D. Rhodes, S. H. Chae, R. Ribeiro-Palau, J. Hone. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater., 2019, 18(6): 541
CrossRef ADS Google scholar
[18]
L. Xie, M. Liao, S. Wang, H. Yu, L. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X. Lu, G. Wang, G. Xie, R. Yang, D. Shi, G. Zhang. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
CrossRef ADS Google scholar
[19]
J. Tian, Q. Wang, X. Huang, J. Tang, Y. Chu, S. Wang, C. Shen, Y. Zhao, N. Li, J. Liu, Y. Ji, B. Huang, Y. Peng, R. Yang, W. Yang, K. Watanabe, T. Taniguchi, X. Bai, D. Shi, L. Du, G. Zhang. Scaling of MoS2 transistors and inverters to sub-10 nm channel length with high performance. Nano Lett., 2023, 23(7): 2764
CrossRef ADS Google scholar
[20]
R. Wu, Q. Tao, J. Li, W. Li, Y. Chen, Z. Lu, Z. Shu, B. Zhao, H. Ma, Z. Zhang, X. Yang, B. Li, H. Duan, L. Liao, Y. Liu, X. Duan, X. Duan. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron., 2022, 5(8): 497
CrossRef ADS Google scholar
[21]
F.WuJ.Ren Y.YangZ. YanH.TianG.GouX.Wang Z.ZhangX. YangX.WuT.L. Ren, A 10 nm short channel MoS2 transistor without the resolution requirement of photolithography, Adv. Electron. Mater. 7(12), 2100543 (2021)
[22]
Y. Wang, J. C. Kim, R. J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H. Y. Jeong, M. Chhowalla. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019, 568(7750): 70
CrossRef ADS Google scholar
[23]
Y. Liu, X. Duan, Y. Huang, X. Duan. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev., 2018, 47(16): 6388
CrossRef ADS Google scholar
[24]
G. Zhang, J. Zhong, Q. Chen, Y. Yan, H. Chen, T. Guo. High-performance organic phototransistors with vertical structure design. IEEE Trans. Electron Dev., 2019, 66(4): 1815
CrossRef ADS Google scholar
[25]
G. Han, S. Cao, Q. Yang, W. Yang, T. Guo, H. Chen. High-performance all-solution-processed flexible photodetector arrays based on ultrashort channel amorphous oxide semiconductor transistors. ACS Appl. Mater. Interfaces, 2018, 10(47): 40631
CrossRef ADS Google scholar
[26]
H. Zhang, Y. Zhang, X. Song, Y. Yu, M. Cao, Y. Che, H. Dai, J. Yang, X. Ding, G. Zhang, J. Yao. Short channel quantum dot vertical and lateral phototransistors. Adv. Opt. Mater., 2017, 5(2): 1600434
CrossRef ADS Google scholar
[27]
R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, K. S. Novoselov. Control of radiation damage in MoS2 by graphene encapsulation. ACS Nano, 2013, 7(11): 10167
CrossRef ADS Google scholar
[28]
X. Zheng, A. Calo, T. Cao, X. Liu, Z. Huang, P. M. Das, M. Drndic, E. Albisetti, F. Lavini, T. D. Li, V. Narang, W. P. King, J. W. Harrold, M. Vittadello, C. Aruta, D. Shahrjerdi, E. Riedo. Spatial defects nanoengineering for bipolar conductivity in MoS2. Nat. Commun., 2020, 11(1): 3463
CrossRef ADS Google scholar
[29]
E. Albisetti, D. Petti, M. Pancaldi, M. Madami, S. Tacchi, J. Curtis, W. P. King, A. Papp, G. Csaba, W. Porod, P. Vavassori, E. Riedo, R. Bertacco. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nat. Nanotechnol., 2016, 11(6): 545
CrossRef ADS Google scholar
[30]
E. Albisetti, K. M. Carroll, X. Lu, J. E. Curtis, D. Petti, R. Bertacco, E. Riedo. Thermochemical scanning probe lithography of protein gradients at the nanoscale. Nanotechnology, 2016, 27(31): 315302
CrossRef ADS Google scholar
[31]
K. M. Carroll, A. J. Giordano, D. Wang, V. K. Kodali, J. Scrimgeour, W. P. King, S. R. Marder, E. Riedo, J. E. Curtis. Fabricating nanoscale chemical gradients with thermochemical nanolithography. Langmuir, 2013, 29(27): 8675
CrossRef ADS Google scholar
[32]
E. Albisetti, D. Petti, G. Sala, R. Silvani, S. Tacchi, S. Finizio, S. Wintz, A. Calò, X. Zheng, J. Raabe, E. Riedo, R. Bertacco. Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures. Commun. Phys., 2018, 1(1): 56
CrossRef ADS Google scholar
[33]
K. M. Carroll, X. Lu, S. Kim, Y. Gao, H. J. Kim, S. Somnath, L. Polloni, R. Sordan, W. P. King, J. E. Curtis, E. Riedo. Parallelization of thermochemical nanolithography. Nanoscale, 2014, 6(3): 1299
CrossRef ADS Google scholar
[34]
Y. K. Ryu Cho, C. D. Rawlings, H. Wolf, M. Spieser, S. Bisig, S. Reidt, M. Sousa, S. R. Khanal, T. D. B. Jacobs, A. W. Knoll. Sub-10 nanometer feature size in silicon using thermal scanning probe lithography. ACS Nano, 2017, 11(12): 11890
CrossRef ADS Google scholar
[35]
R. Garcia, A. W. Knoll, E. Riedo. Advanced scanning probe lithography. Nat. Nanotechnol., 2014, 9(8): 577
CrossRef ADS Google scholar
[36]
X. Liu, Z. Huang, X. Zheng, D. Shahrjerdi, E. Riedo. Nanofabrication of graphene field-effect transistors by thermal scanning probe lithography. APL Mater., 2021, 9(1): 011107
CrossRef ADS Google scholar
[37]
H. Xiao, T. Liang, M. Xu. Growth of ultraflat PbI2 nanoflakes by solvent evaporation suppression for high-performance UV photodetectors. Small, 2019, 15(33): 1901767
CrossRef ADS Google scholar
[38]
Z. Qi, T. Yang, D. Li, H. Li, X. Wang, X. Zhang, F. Li, W. Zheng, P. Fan, X. Zhuang, A. Pan. High-responsivity two-dimensional p-PbI2/n-WS2 vertical heterostructure photodetectors enhanced by photogating effect. Mater. Horiz., 2019, 6(7): 1474
CrossRef ADS Google scholar
[39]
M. Han, J. Sun, L. Bian, Z. Wang, L. Zhang, Y. Yin, Z. Gao, F. Li, Q. Xin, L. He, N. Han, A. Song, Z. X. Yang. Two-step vapor deposition of self-catalyzed large-size PbI2 nanobelts for high-performance photodetectors. J. Mater. Chem. C, 2018, 6(21): 5746
CrossRef ADS Google scholar
[40]
R. Wang, S. Li, P. Wang, J. Xiu, G. Wei, M. Sun, Z. Li, Y. Liu, M. Zhong. PbI2 nanosheets for photodetectors via the facile cooling thermal supersaturation solution method. J. Phys. Chem. C, 2019, 123(14): 9609
CrossRef ADS Google scholar
[41]
J. Zhang, Y. Huang, Z. Tan, T. Li, Y. Zhang, K. Jia, L. Lin, L. Sun, X. Chen, Z. Li, C. Tan, J. Zhang, L. Zheng, Y. Wu, B. Deng, Z. Chen, Z. Liu, H. Peng. Flexible photodetectors: Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater., 2018, 30(36): 1803194
CrossRef ADS Google scholar
[42]
D. Zhang, Y. Liu, M. He, A. Zhang, S. Chen, Q. Tong, L. Huang, Z. Zhou, W. Zheng, M. Chen, K. Braun, A. J. Meixner, X. Wang, A. Pan. Room temperature near unity spin polarization in 2D van der Waals heterostructures. Nat. Commun., 2020, 11(1): 4442
CrossRef ADS Google scholar
[43]
H. Sun, B. Zhao, D. Yang, P. Wangyang, X. Gao, X. Zhu. Flexible X-ray detector based on sliced lead iodide crystal. Phys. Status Solidi Rapid Res. Lett., 2017, 11(2): 1600397
CrossRef ADS Google scholar
[44]
S. Roth, W. R. Willig. Lead iodide nuclear particle detectors. Appl. Phys. Lett., 1971, 18(8): 328
CrossRef ADS Google scholar
[45]
Y. Sun, Z. Zhou, Z. Huang, J. Wu, L. Zhou, Y. Cheng, J. Liu, C. Zhu, M. Yu, P. Yu, W. Zhu, Y. Liu, J. Zhou, B. Liu, H. Xie, Y. Cao, H. Li, X. Wang, K. Liu, X. Wang, J. Wang, L. Wang, W. Huang. Band structure engineering of interfacial semiconductors based on atomically thin lead iodide crystals. Adv. Mater., 2019, 31(17): 1806562
CrossRef ADS Google scholar
[46]
D. Zhou, P. Zhao, J. Zhang, X. Jiang, S. Qin, X. Zhang, R. Jiang, Y. Deng, H. Jiang, G. Zhan, Y. Luo, H. Ma, L. Wang. Lithographic multicolor patterning on hybrid perovskites for nano-optoelectronic applications. Small, 2022, 18(48): 2205227
CrossRef ADS Google scholar
[47]
M. Long, P. Wang, H. Fang, W. Hu. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater., 2019, 29(19): 1803807
CrossRef ADS Google scholar
[48]
F. Xue, Z. Wang, Y. Hou, L. Gu, R. Wu. Control of magnetic properties of MnBi2Te4 using a van der Waals ferroelectric III2−VI3 film and biaxial strain. Phys. Rev. B, 2020, 101(18): 184426
CrossRef ADS Google scholar
[49]
J. Zhang, T. Song, Z. Zhang, K. Ding, F. Huang, B. Sun. Layered ultrathin PbI2 single crystals for high sensitivity flexible photodetectors. J. Mater. Chem. C, 2015, 3(17): 4402
CrossRef ADS Google scholar
[50]
M. M. Furchi, D. K. Polyushkin, A. Pospischil, T. Mueller. Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett., 2014, 14(11): 6165
CrossRef ADS Google scholar
[51]
W. Zheng, Z. Zhang, R. Lin, K. Xu, J. He, F. Huang. High-crystalline 2D layered PbI2 with ultrasmooth surface: Liquid-phase synthesis and application of high-speed photon detection. Adv. Electron. Mater., 2016, 2(11): 1600291
CrossRef ADS Google scholar
[52]
Y. Wang, L. Gan, J. Chen, R. Yang, T. Zhai. Achieving highly uniform two-dimensional PbI2 flakes for photodetectors via space confined physical vapor deposition. Sci. Bull. (Beijing), 2017, 62(24): 1654
CrossRef ADS Google scholar
[53]
R. Frisenda, J. O. Island, J. L. Lado, E. Giovanelli, P. Gant, P. Nagler, S. Bange, J. M. Lupton, C. Schuller, A. J. Molina-Mendoza, L. Aballe, M. Foerster, T. Korn, M. Angel Nino, D. P. de Lara, E. M. Perez, J. Fernandez-Rossier, A. Castellanos-Gomez. Characterization of highly crystalline lead iodide nanosheets prepared by room-temperature solution processing. Nanotechnology, 2017, 28(45): 455703
CrossRef ADS Google scholar
[54]
Q. Wei, B. Shen, Y. Chen, B. Xu, Y. Xia, J. Yin, Z. Liu. Large-sized PbI2 single crystal grown by co-solvent method for visible-light photo-detector application. Mater. Lett., 2017, 193(15): 101
CrossRef ADS Google scholar
[55]
C. Lan, R. Dong, Z. Zhou, L. Shu, D. Li, S. Yip, J. C. Ho. Large‐scale synthesis of freestanding layer‐structured PbI2 and MAPbI3 nanosheets for high-performance photodetection. Adv. Mater., 2017, 29(39): 1702759
CrossRef ADS Google scholar
[56]
S. Yang, J. Han, J. Zhang, Y. Kong, H. Liu. In situ growth of PbS/PbI2 heterojunction and its photoelectric properties. Nanomaterials (Basel), 2022, 12(4): 681
CrossRef ADS Google scholar
[57]
P. A. Lemieux, M. Vera, D. J. Durian. Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering. Phys. Rev. E, 1998, 57(4): 4498
CrossRef ADS Google scholar
[58]
L. Banszerus, M. Schmitz, S. Engels, M. Goldsche, K. Watanabe, T. Taniguchi, B. Beschoten, C. Stampfer. Ballistic transport exceeding 28 μm in CVD grown graphene. Nano Lett., 2016, 16(2): 1387
CrossRef ADS Google scholar
[59]
P. Luo, C. Liu, J. Lin, X. Duan, W. Zhang, C. Ma, Y. Lv, X. Zou, Y. Liu, F. Schwierz, W. Qin, L. Liao, J. He, X. Liu. Molybdenum disulfide transistors with enlarged van der Waals gaps at their dielectric interface via oxygen accumulation. Nat. Electron., 2022, 5(12): 849
CrossRef ADS Google scholar
[60]
J. Jiang, L. Xu, C. Qiu, L. M. Peng. Ballistic two-dimensional InSe transistors. Nature, 2023, 616(7957): 470
CrossRef ADS Google scholar
[61]
J. Bardeen, W. Shockley. Deformation potentials and mobilities in non-polar crystals. Phys. Rev., 1950, 80(1): 72
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1323-1 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1323-1.

Acknowledgements

The work was financially supported by the National Key R&D Program of China (Grant Nos. 2020YFA0308900 and 2022YFB3602801) and the National Natural Science Foundation References of China (Grant No. 92064010).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7140 KB)

Accesses

Citations

Detail

Sections
Recommended

/