Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites

Huimin Mu, Kun Zhou, Fuyu Tian, Yansong Zhou, Guoqi Zhao, Yuhao Fu, Lijun Zhang

PDF(4961 KB)
PDF(4961 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63304. DOI: 10.1007/s11467-023-1315-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites

Author information +
History +

Abstract

The effective modulation of the thermal conductivity of halide perovskites is of great importance in optimizing their optoelectronic device performance. Based on first-principles lattice dynamics calculations, we found that alloying at the B and X sites can significantly modulate the thermal transport properties of 2D Ruddlesden−Popper (RP) phase halide perovskites, achieving a range of lattice thermal conductivity values from the lowest ( κc = 0.05 W·m−1·K−1@Cs4AgBiI8) to the highest ( κ a/b = 0.95 W·m−1·K−1@Cs4NaBiCl4I4). Compared with the pure RP-phase halide perovskites and three-dimensional halide perovskite alloys, the two-dimensional halide perovskite introduces more phonon branches through alloying, resulting in stronger phonon branch coupling, which effectively scatters phonons and reduces thermal conductivity. Alloying can also dramatically regulate the thermal transport anisotropy of RP-phase halide perovskites, with the anisotropy ratio ranging from 1.22 to 4.13. Subsequently, analysis of the phonon transport modes in these structures revealed that the lower phonon velocity and shorter phonon lifetime were the main reasons for their low thermal conductivity. This work further reduces the lattice thermal conductivity of 2D pure RP-phase halide perovskites by alloying methods and provides a strong support for theoretical guidance by gaining insight into the interesting phonon transport phenomena in these compounds.

Graphical abstract

Keywords

first-principles lattice dynamics calculations / Boltzmann transport / all-inorganic RP-phase halide perovskite alloys / thermal conductivity

Cite this article

Download citation ▾
Huimin Mu, Kun Zhou, Fuyu Tian, Yansong Zhou, Guoqi Zhao, Yuhao Fu, Lijun Zhang. Alloy-induced reduction and anisotropy change of lattice thermal conductivity in Ruddlesden– Popper phase halide perovskites. Front. Phys., 2023, 18(6): 63304 https://doi.org/10.1007/s11467-023-1315-1

References

[1]
H. Park, C. Ha, J. H. Lee. Advances in piezoelectric halide perovskites for energy harvesting applications. J. Mater. Chem. A, 2020, 8(46): 24353
CrossRef ADS Google scholar
[2]
L. Zhang, J. Jiang, C. Multunas, C. Ming, Z. Chen, Y. Hu, Z. Lu, S. Pendse, R. Jia, M. Chandra, Y. Sun, T. Lu, Y. Ping, R. Sundararaman, J. Shi. Room-temperature electrically switchable spin–valley coupling in a van Der Waals ferroelectric halide perovskite with persistent spin helix. Nat. Photonics, 2022, 16(7): 529
CrossRef ADS Google scholar
[3]
D. Zhang, Q. Zhang, Y. Zhu, S. Poddar, Y. Zhang, L. Gu, H. Zeng, Z. Fan. Metal halide perovskite nanowires: Synthesis, integration, properties, and applications in optoelectronics. Adv. Energy Mater., 2022, 2022: 2201735
CrossRef ADS Google scholar
[4]
T. Haeger, R. Heiderhoff, T. Riedl. Thermal properties of metal-halide perovskites. J. Mater. Chem. C, 2020, 8(41): 14289
CrossRef ADS Google scholar
[5]
Y. Li, G. Na, S. Luo, X. He, L. Zhang. Structural, thermodynamical and electronic properties of all-inorganic lead halide perovskites. Acta Phys. -Chim. Sin., 2020, 37(4): 2007015
CrossRef ADS Google scholar
[6]
W. Feng, R. Zhao, X. Wang, B. Xing, Y. Zhang, X. He, L. Zhang. Global instability index as a crystallographic stability descriptor of halide and chalcogenide perovskites. J. Energy Chem., 2022, 70: 1
CrossRef ADS Google scholar
[7]
N. Jiang, B. Xing, Y. Wang, H. Zhang, D. Yin, Y. Liu, Y. Bi, L. Zhang, J. Feng, H. Sun. Mechanically and operationally stable flexible inverted perovskite solar cells with 20.32% efficiency by a simple oligomer cross-linking method. Sci. Bull. (Beijing), 2022, 67(8): 794
CrossRef ADS Google scholar
[8]
W. Lee, H. Li, A. B. Wong, D. Zhang, M. Lai, Y. Yu, Q. Kong, E. Lin, J. J. Urban, J. C. Grossman, P. Yang. Ultralow thermal conductivity in all-inorganic halide perovskites. Proc. Natl. Acad. Sci. USA, 2017, 114(33): 8693
CrossRef ADS Google scholar
[9]
E. Haque, M. A. Hossain. Electronic, phonon transport and thermoelectric properties of Cs2InAgCl6 from first-principles study. Comput. Condens. Matter, 2019, 19: e00374
CrossRef ADS Google scholar
[10]
M. Fallah, H. M. Moghaddam. Ultra-low lattice thermal conductivity and high thermoelectric efficiency in Cs2SnX6 (X=Br, I): A DFT study. Mater. Sci. Semicond. Process., 2021, 133: 105984
CrossRef ADS Google scholar
[11]
Y. Cai, M. Faizan, X. Shen, A. M. Mebed, T. A. Alrebdi, X. He. NaBeAs and NaBeSb: Novel ternary pnictides with enhanced thermoelectric performance. J. Phys. Chem. C, 2023, 127(4): 1733
CrossRef ADS Google scholar
[12]
F. Qian, M. Hu, J. Gong, C. Ge, Y. Zhou, J. Guo, M. Chen, Z. Ge, N. P. Padture, Y. Zhou, J. Feng. Enhanced thermoelectric performance in lead-free inorganic CsSn1–xGexI3 perovskite semiconductors. J. Phys. Chem. C, 2020, 124(22): 11749
CrossRef ADS Google scholar
[13]
Q. Mahmood, M. Hassan, N. Yousaf, A. A. AlObaid, T. I. Al-Muhimeed, M. Morsi, H. Albalawi, O. A. Alamri. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications. Mater. Sci. Semicond. Process., 2022, 137: 106180
CrossRef ADS Google scholar
[14]
Y. X. Chen, W. Qin, A. Mansoor, A. Abbas, F. Li, G. Liang, P. Fan, M. U. Muzaffar, B. Jabar, Z. Ge, Z. Zheng. Realizing high thermoelectric performance via selective resonant doping in oxyselenide BiCuSeO. Nano Res., 2023, 16(1): 1679
CrossRef ADS Google scholar
[15]
X. Lin, X. Dai, Z. Ye, Y. Shu, Z. Song, X. Peng. Highly-efficient thermoelectric-driven light-emitting diodes based on colloidal quantum dots. Nano Res., 2022, 15(10): 9402
CrossRef ADS Google scholar
[16]
Z. Zhu, J. Tiwari, T. Feng, Z. Shi, Y. Lou, B. Xu. High thermoelectric properties with low thermal conductivity due to the porous structure induced by the dendritic branching in N-type PbS. Nano Res., 2022, 15(5): 4739
CrossRef ADS Google scholar
[17]
S. Kawano, T. Tadano, S. Iikubo. Effect of Halogen ions on the low thermal conductivity of cesium halide perovskite. J. Phys. Chem. C, 2021, 125(1): 91
CrossRef ADS Google scholar
[18]
M. Sajjad, Q. Mahmood, N. Singh, J. A. Larsson. Ultralow lattice thermal conductivity in double perovskite Cs2PtI6: A promising thermoelectric material. ACS Appl. Energy Mater., 2020, 3(11): 11293
CrossRef ADS Google scholar
[19]
S. Ahmad, P. Fu, S. Yu, Q. Yang, X. Liu, X. Wang, X. Wang, X. Guo, C. Li. Dion–Jacobson phase 2D layered perovskites for solar cells with ultrahigh stability. Joule, 2019, 3(3): 794
CrossRef ADS Google scholar
[20]
R. Azmi, E. Ugur, A. Seitkhan, F. Aljamaan, A. S. Subbiah, J. Liu, G. T. Harrison, M. I. Nugraha, M. K. Eswaran, M. Babics, Y. Chen, F. Xu, T. G. Allen, A. Rehman, C. L. Wang, T. D. Anthopoulos, U. Schwingenschlögl, M. De Bastiani, E. Aydin, S. De Wolf. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science, 2022, 376(6588): 73
CrossRef ADS Google scholar
[21]
Y. Wei, B. Chen, F. Zhang, Y. Tian, X. Yang, B. Cai, J. Zhao. Compositionally designed 2D Ruddlesden–Popper perovskites for efficient and stable solar cells. Solar RRL, 2021, 5(4): 2000661
CrossRef ADS Google scholar
[22]
G. Zhao, J. Xie, K. Zhou, B. Xing, X. Wang, F. Tian, X. He, L. Zhang. High-throughput computational material screening of the cycloalkane-based two-dimensional Dion–Jacobson halide perovskites for optoelectronics. Chin. Phys. B, 2022, 31(3): 037104
CrossRef ADS Google scholar
[23]
P. H. Tan, L. Zhang, L. Dai, S. Zhou. Preface to the special issue on 2D-materials-related physical properties and optoelectronic devices. J. Semicond., 2019, 40(6): 060101
CrossRef ADS Google scholar
[24]
X. Yan, W. Fan, F. Cheng, H. Sun, C. Xu, L. Wang, Z. Kang, Y. Zhang. Ion migration in hybrid perovskites: Classification, identification, and manipulation. Nano Today, 2022, 44: 101503
CrossRef ADS Google scholar
[25]
A. D. Christodoulides, P. Guo, L. Dai, J. M. Hoffman, X. Li, X. Zuo, D. Rosenmann, A. Brumberg, M. G. Kanatzidis, R. D. Schaller, J. A. Malen. Signatures of coherent phonon transport in ultralow thermal conductivity two-dimensional Ruddlesden–Popper phase perovskites. ACS Nano, 2021, 15(3): 4165
CrossRef ADS Google scholar
[26]
C. Pipitone, S. Boldrini, A. Ferrario, G. Garcìa-Espejo, A. Guagliardi, N. Masciocchi, A. Martorana, F. Giannici. Ultralow thermal conductivity in 1D and 2D imidazolium-based lead halide perovskites. Appl. Phys. Lett., 2021, 119(10): 101104
CrossRef ADS Google scholar
[27]
S. Thakur, Z. Dai, P. Karna, N. P. Padture, A. Giri. Tailoring the thermal conductivity of two-dimensional metal halide perovskites. Mater. Horiz., 2022, 9(12): 3087
CrossRef ADS Google scholar
[28]
C. Li, H. Ma, T. Li, J. Dai, M. A. J. Rasel, A. Mattoni, A. Alatas, M. G. Thomas, Z. W. Rouse, A. Shragai, S. P. Baker, B. Ramshaw, J. P. Feser, D. B. Mitzi, Z. Tian. Remarkably weak anisotropy in thermal conductivity of two-dimensional hybrid perovskite butylammonium lead iodide crystals. Nano Lett., 2021, 21(9): 3708
CrossRef ADS Google scholar
[29]
C. Ge, M. Hu, P. Wu, Q. Tan, Z. Chen, Y. Wang, J. Shi, J. Feng, Ultralow thermal conductivityand ultrahigh thermal expansion of single-crystal organic–inorganic hybrid perovskite CH3NH3PbX3 (X = Cl. Br, I). J. Phys. Chem. C, 2018, 122(28): 15973
CrossRef ADS Google scholar
[30]
G. A. Elbaz, W. L. Ong, E. A. Doud, P. Kim, D. W. Paley, X. Roy, J. A. Malen. Phonon speed, not scattering, differentiates thermal transport in lead halide perovskites. Nano Lett., 2017, 17(9): 5734
CrossRef ADS Google scholar
[31]
P. Acharyya, T. Ghosh, K. Pal, K. Kundu, K. Singh Rana, J. Pandey, A. Soni, U. V. Waghmare, K. Biswas. Intrinsically ultralow thermal conductivity in Ruddlesden–Popper 2D perovskite Cs2PbI2Cl2 : Localized anharmonic vibrations and dynamic octahedral distortions. J. Am. Chem. Soc., 2020, 142(36): 15595
CrossRef ADS Google scholar
[32]
J. Tang, C. Qin, H. Yu, Z. Zeng, L. Cheng, B. Ge, Y. Chen, W. Li, Y. Pei. Ultralow lattice thermal conductivity enables high thermoelectric performance in BaAg2Te2 alloys. Mater. Today Phys., 2022, 22: 100591
CrossRef ADS Google scholar
[33]
T. Parashchuk, R. Knura, O. Cherniushok, K. T. Wojciechowski. Ultralow lattice thermal conductivity and improved thermoelectric performance in Cl-doped Bi2Te3–xSex alloys. ACS Appl. Mater. Interfaces, 2022, 14(29): 33567
CrossRef ADS Google scholar
[34]
Y. Q. Cao, T. J. Zhu, X. B. Zhao. Low thermal conductivity and improved figure of merit in fine-grained binary PbTe thermoelectric alloys. J. Phys. D Appl. Phys., 2009, 42(1): 015406
CrossRef ADS Google scholar
[35]
X. Wang, M. Faizan, K. Zhou, H. Zou, Q. Xu, Y. Fu, L. Zhang. Exploration of B-site alloying in partially reducing Pb toxicity and regulating thermodynamic stability and electronic properties of halide perovskites. Sci. China Phys. Mech. Astron., 2023, 66(3): 237311
CrossRef ADS Google scholar
[36]
T. J. Slade, T. P. Bailey, J. A. Grovogui, X. Hua, X. Zhang, J. J. Kuo, I. Hadar, G. J. Snyder, C. Wolverton, V. P. Dravid, C. Uher, M. G. Kanatzidis. High thermoelectric performance in PbSe–NaSbSe2 alloys from valence band convergence and low thermal conductivity. Adv. Energy Mater., 2019, 9(30): 1901377
CrossRef ADS Google scholar
[37]
Y. Zheng, C. Liu, L. Miao, C. Li, R. Huang, J. Gao, X. Wang, J. Chen, Y. Zhou, E. Nishibori. Extraordinary thermoelectric performance in MgAgSb alloy with ultralow thermal conductivity. Nano Energy, 2019, 59: 311
CrossRef ADS Google scholar
[38]
G. Kresse, J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[39]
G. Kresse, D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef ADS Google scholar
[40]
C.BragaK. P. Travis, A configurational temperature Nosé–Hoover thermostat, J. Chem. Phys. 123(13), 134101 (2005)
[41]
O. Hellman, P. Steneteg, I. A. Abrikosov, S. I. Simak. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B, 2013, 87(10): 104111
CrossRef ADS Google scholar
[42]
O. Hellman, I. A. Abrikosov, S. I. Simak. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B, 2011, 84(18): 180301
CrossRef ADS Google scholar
[43]
W. Li, J. Carrete, N. A. Katcho, N. Mingo. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun., 2014, 185(6): 1747
CrossRef ADS Google scholar
[44]
D. A. Broido, M. Malorny, G. Birner, N. Mingo, D. A. Stewart. Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett., 2007, 91(23): 231922
CrossRef ADS Google scholar
[45]
A.WardD. A. BroidoD.A. StewartG.Deinzer, Ab initio theory of the lattice thermal conductivity in diamond, Phys. Rev. B 80(12), 125203 (2009)
[46]
W. Li, L. Lindsay, D. A. Broido, D. A. Stewart, N. Mingo. Thermal conductivity of bulk and nanowire Mg2SixSn1−x alloys from first principles. Phys. Rev. B, 2012, 86(17): 174307
CrossRef ADS Google scholar
[47]
R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 1976, 32(5): 751
CrossRef ADS Google scholar
[48]
W. Pu, W. Xiao, J. Wang, X. Li, L. Wang. Screening of perovskite materials for solar cell applications by first-principles calculations. Mater. Des., 2021, 198: 109387
CrossRef ADS Google scholar
[49]
I. L. Ivanov, A. S. Steparuk, M. S. Bolyachkina, D. S. Tsvetkov, A. P. Safronov, A. Yu. Zuev. Thermodynamics of formation of hybrid perovskite-type methylammonium lead halides. J. Chem. Thermodyn., 2018, 116: 253
CrossRef ADS Google scholar
[50]
K.KomiyaN. MorisakuR.RongY.TakahashiY.Shinzato H.YukawaM. Morinaga, Synthesis and decomposition of perovskite-type hydrides, MMgH3 (M=Na, K, Rb), J. Alloys Compd. 453(1–2), 157 (2008)
[51]
A. Gold-Parker, P. M. Gehring, J. M. Skelton, I. C. Smith, D. Parshall, J. M. Frost, H. I. Karunadasa, A. Walsh, M. F. Toney. Acoustic phonon lifetimes limit thermal transport in methylammonium lead iodide. Proc. Natl. Acad. Sci. USA, 2018, 115(47): 11905
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Availability of data and material

The data that support the fndings of this study are available from the corresponding author, upon reasonable request.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1315-1 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1315-1, including: optimized structure parameters; thermal conductivity; decomposition enthalpy; phonon dispersions and the corresponding partial density of states; scattering phase space; average phonon lifetime, average phonon group velocity and heat capacity.

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2022YFA1402501), the National Natural Science Foundation of China (Grant Nos. 12004131, 62125402, 22090044, and 92061113), and Jilin Province Science and Technology Development Program (Grant No. 20210508044RQ). Calculations were performed in part at the high-performance computing center of Jilin University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4961 KB)

Accesses

Citations

Detail

Sections
Recommended

/