HfAlO-based ferroelectric memristors for artificial synaptic plasticity

Jie Yang, Zixuan Jian, Zhongrong Wang, Jianhui Zhao, Zhenyu Zhou, Yong Sun, Mengmeng Hao, Linxia Wang, Pan Liu, Jingjuan Wang, Yifei Pei, Zhen Zhao, Wei Wang, Xiaobing Yan

PDF(5995 KB)
PDF(5995 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63603. DOI: 10.1007/s11467-023-1310-6
RESEARCH ARTICLE
RESEARCH ARTICLE

HfAlO-based ferroelectric memristors for artificial synaptic plasticity

Author information +
History +

Abstract

Memristors have received much attention for their ability to achieve multi-level storage and synaptic learning. However, the main factor that hinders the application of memristors to simulate neural synapses is the instability of the formation and breakage of conductive filaments inside traditional memristors, which makes it difficult to simulate the function of biological synapses in practice. However, the resistance change of ferroelectric memristors relies on the polarization inversion of the ferroelectric thin film, thus avoiding the above problem. In this study, a Pd/HfAlO/LSMO/STO/Si ferroelectric memristor is proposed, which can achieve resistive switching properties through the combined action of ferroelectricity and oxygen vacancies. The I−V curves show that the device has good stability and uniformity. In addition, the effect of pulse sequence modulation on the conductance was investigated, and the biological synaptic function and learning behavior were simulated successfully. The results of the above studies provide a basis for the development of ferroelectric memristors with neurosynaptic-like behaviors.

Graphical abstract

Keywords

memristor / ferroelectric domain polarization / resistance regulation / artificial synapse

Cite this article

Download citation ▾
Jie Yang, Zixuan Jian, Zhongrong Wang, Jianhui Zhao, Zhenyu Zhou, Yong Sun, Mengmeng Hao, Linxia Wang, Pan Liu, Jingjuan Wang, Yifei Pei, Zhen Zhao, Wei Wang, Xiaobing Yan. HfAlO-based ferroelectric memristors for artificial synaptic plasticity. Front. Phys., 2023, 18(6): 63603 https://doi.org/10.1007/s11467-023-1310-6

References

[1]
C. Zhang , Y. Chen , M. Yi , Y. Zhu , T. Li , L. Liu , L. Wang , L. Xie , W. Huang . Recent progress in memristors for stimulating synaptic plasticity. Scientia Sinica Informationis, 2018, 48(2): 115
CrossRef ADS Google scholar
[2]
J.NicholasR.Akshay KrishnaS.AbhronilS.JohnN.Vijaykrishnan, 2019 IEEE International Symposium on Circuits and Systems (IEEE ISCAS), pp 1–5 (2019)
[3]
S. B. Furber , D. R. Lester , L. A. Plana , J. D. Garside , E. Painkras , S. Temple , A. D. Brown . Overview of the spinnaker system architecture. IEEE Trans. Comput., 2012, 62(12): 2454
CrossRef ADS Google scholar
[4]
K. Sun , J. Chen , X. Yan . The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
CrossRef ADS Google scholar
[5]
H.KimM.P. SahC.YangL.O. Chua, 2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA 2010), pp 1–6 (2010)
[6]
D.NiuY.ChenY.Xie, Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design, pp 25–30 (2010)
[7]
A.PisarevA.BusyginS.UdovichenkoO.Maevsky, 3D memory matrix based on a composite memristor-diode crossbar for a neuromorphic processor, Microelectron. Eng. 198, 1 (2018)
[8]
A. Sokolov , M. Ali , H. Li , Y. R. Jeon , M. J. Ko , C. Choi . Partially oxidized MXene Ti3C2Tx sheets for memristor having synapse and threshold resistive switching characteristics. Adv. Electron. Mater., 2021, 7(2): 2000866
CrossRef ADS Google scholar
[9]
T. Yu , F. He , J. Zhao , Z. Zhou , J. Chang , J. Chen , X. Yan . Hf0.5Zr0.5O2-based ferroelectric memristor with multilevel storage potential and artificial synaptic plasticity. Sci. China Mater., 2021, 64(3): 727
CrossRef ADS Google scholar
[10]
V. Mikheev , A. Chouprik , Y. Lebedinskii , S. Zarubin , A. M. Markeev , A. V. Zenkevich , D. Negrov . Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31(21): 215205
CrossRef ADS Google scholar
[11]
K. Humood , S. Saylan , M. Abi Jaoude , B. Mohammad , F. Ravaux . Impact of vacuum on the resistive switching in HfO2-based conductive-bridge RAM with highly-doped silicon bottom electrode. Mater. Sci. Eng. B, 2021, 271: 115267
CrossRef ADS Google scholar
[12]
S. Chakrabartty , S. Acharjee , A. Al-Shidaifat , M. Biswas , H. Song . Gd-doped HfO2 memristor device, evaluation robustness by image noise cancellation and edge detection filter for neuromorphic computing. IEEE Access, 2019, 7: 157922
CrossRef ADS Google scholar
[13]
Y. Wang , G. Niu , Q. Wang , S. Roy , L. Dai , H. Wu , Y. Sun , S. Song , Z. Song , Y. Xie , Z. Ye , X. Meng , W. Ren . Reliable resistive switching of epitaxial single crystalline cubic Y-HfO2 RRAMs with Si as bottom electrodes. Nanotechnology, 2020, 31(20): 205203
CrossRef ADS Google scholar
[14]
H. Kohlstedt , N. A. Pertsev , J. R. Contreras , R. Waser . Theoretical current-voltage characteristics of ferroelectric tunnel junctions. Phys. Rev. B, 2005, 72(12): 125341
CrossRef ADS Google scholar
[15]
R. Guo , Z. Wang , S. Zeng , K. Han , L. Huang , D. G. Schlom , T. Venkatesan , Ariando Chen . Functional ferroelectric tunnel junctions on silicon. Sci. Rep., 2015, 5(1): 12576
CrossRef ADS Google scholar
[16]
J. Choi , S. Kim . Nonlinear characteristics of complementary resistive switching in HfAlOx-based memristor for high-density cross-point array structure. Coatings, 2020, 10(8): 765
CrossRef ADS Google scholar
[17]
T. Y. Wang , J. L. Meng , M. Y. Rao , Z. Y. He , L. Chen , H. Zhu , Q. Q. Sun , S. J. Ding , W. Z. Bao , P. Zhou , D. W. Zhang . Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett., 2020, 20(6): 4111
CrossRef ADS Google scholar
[18]
C. Mahata , M. Ismail , S. Kim . Conductance quantization control and neuromorphic properties in Pt-nanoparticle incorporated HfAlOx alloy memristor. Appl. Phys. Lett., 2021, 119(22): 221601
CrossRef ADS Google scholar
[19]
T. Miao , D. Yu , L. Xing , D. Li , L. Jiao , W. Ma , X. Zhang . Current rectification in a structure: ReSe2/Au contacts on both sides of ReSe2. Nanoscale Res. Lett., 2019, 14(1): 1
CrossRef ADS Google scholar
[20]
E. Covi , S. Brivio , M. Fanciulli , S. Spiga . Synaptic potentiation and depression in Al: HfO2-based memristor. Microelectron. Eng., 2015, 147: 41
CrossRef ADS Google scholar
[21]
Z. Xu , L. Yu , Y. Wu , C. Dong , N. Deng , X. Xu , J. Miao , Y. Jiang . Low-energy resistive random access memory devices with no need for a compliance current. Sci. Rep., 2015, 5: 10409
CrossRef ADS Google scholar
[22]
H. Boschker , M. Huijben , A. Vailionis , J. Verbeeck , S. van Aert , M. Luysberg , S. Bals , G. van Tendeloo , E. P. Houwman , G. Koster , D. H. A. Blank , G. Rijnders . Optimized fabrication of high-quality La0.67Sr0.33MnO3 thin films considering all essential characteristics. J. Phys. D Appl. Phys., 2011, 44(20): 205001
CrossRef ADS Google scholar
[23]
J. H. Chang , C. G. Zheng , H. H. Chen , P. T. Chen , C. B. Liu , K. Y. Huang , H. H. Hsu , C. H. Cheng , W. C. Chou , S. T. Han . Effect of capping layer on the ferroelectricity of hafnium oxide. Thin Solid Films, 2022, 753: 139274
CrossRef ADS Google scholar
[24]
H. M. Yau , X. Chen , C. M. Wong , D. Chen , J. Dai . Orientation control of phase transition and ferroelectricity in Al-doped HfO2 thin films. Mater. Charact., 2021, 176: 111114
CrossRef ADS Google scholar
[25]
E. O. Filatova , A. A. Sokolov , I. V. Kozhevnikov , E. Y. Taracheva , O. S. Grunsky , F. Schaefers , W. Braun . Investigation of the structure of thin HfO2 films by soft X-ray reflectometry techniques. J. Phys.: Condens. Matter, 2009, 21(18): 185012
CrossRef ADS Google scholar
[26]
Z. Fan , J. X. Xiao , J. X. Wang , L. Zhang , J. Y. Deng , Z. Y. Liu , Z. L. Dong , J. Wang , J. S. Chen . Ferroelectricity and ferroelectric resistive switching in sputtered Hf0.5Zr0.5O2 thin films. Appl. Phys. Lett., 2016, 108(23): 232905
CrossRef ADS Google scholar
[27]
Y. Li , S. Long , Q. Liu , H. Lü , S. Liu , M. Liu . An overview of resistive random access memory devices. Chin. Sci. Bull., 2011, 56(28−29): 3072
CrossRef ADS Google scholar
[28]
L. Yin , R. Cheng , Z. Wang , F. Wang , M. G. Sendeku , Y. Wen , X. Zhan , J. He . Two-dimensional unipolar memristors with logic and memory functions. Nano Lett., 2020, 20(6): 4144
CrossRef ADS Google scholar
[29]
L. Yin , R. Q. Cheng , Y. Wen , C. S. Liu , J. He . Emerging 2D memory devices for in‐memory computing. Adv. Mater., 2021, 33(29): 2007081
CrossRef ADS Google scholar
[30]
H.Y. LeeP.S. ChenT.Y. WuY.S. ChenC.C. WangP.J. TzengC.H. LinF.ChenC.H. LienM.J. Tsai, 2008 IEEE International Electron Devices Meeting, pp 1–4 (2008)
[31]
S. Yu , X. Guan , H. S. P. Wong . Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model. Appl. Phys. Lett., 2011, 99(6): 063507
CrossRef ADS Google scholar
[32]
C. Cagli , F. Nardi , D. Ielmini . Modeling of set/reset operations in NiO-based resistive-switching memory devices. IEEE Trans. Electron Dev., 2009, 56(8): 1712
CrossRef ADS Google scholar
[33]
W. K. Cheng , F. Wang , Y. M. Han , Z. C. Zhang , J. S. Zhao , K. L. Zhang . HfO2-based resistive switching memory with CNTs electrode for high density storage. Solid-State Electron., 2017, 132: 19
CrossRef ADS Google scholar
[34]
X. Yan , J. Wang , M. Zhao , X. Li , H. Wang , L. Zhang , C. Lu , D. Ren . Artificial electronic synapse characteristics of a Ta/Ta2O5−x/Al2O3/InGaZnO4 memristor device on flexible stainless steel substrate. Appl. Phys. Lett., 2018, 113(1): 013503
CrossRef ADS Google scholar
[35]
H. Algadi , C. Mahata , T. Alsuwian , M. Ismail , D. Kwon , S. Kim . Gradual resistive switching and synaptic properties of ITO/HfAlO/ITO device embedded with Pt nanoparticles. Mater. Lett., 2021, 298: 130011
CrossRef ADS Google scholar
[36]
S. H. Kim , O. Kwon , H. Ryu , S. J. Kim . Improved synaptic device properties of HfAlOx dielectric on highly doped silicon substrate by partial reset process. Metals (Basel), 2021, 11(5): 772
CrossRef ADS Google scholar
[37]
R. W. Kao , H. K. Peng , K. Y. Chen , Y. H. Wu . HfZrOx-based switchable diode for logic-in-memory applications. IEEE Trans. Electron Dev., 2021, 68(2): 545
CrossRef ADS Google scholar
[38]
Z. Wu , J. Zhu . Enhanced unipolar resistive switching characteristics of Hf0.5Zr0.5O2 thin films with high ON/OFF ratio. Materials (Basel), 2017, 10(3): 322
CrossRef ADS Google scholar
[39]
M. Li , J. Zhou , X. Jing , M. Zeng , S. Wu , J. Gao , Z. Zhang , X. Gao , X. Lu , J. M. Liu , M. Alexe . Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies. Adv. Electron. Mater., 2015, 1(6): 1500069
CrossRef ADS Google scholar
[40]
V. V. Zhirnov , R. K. Cavin . Charge of the heavy brigade. Nat. Nanotechnol., 2008, 3(7): 377
CrossRef ADS Google scholar
[41]
H. T. Yi , T. Choi , S. G. Choi , Y. S. Oh , S. W. Cheong . Mechanism of the switchable photovoltaic effect in ferroelectric BiFeO3. Adv. Mater., 2011, 23(30): 3403
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflict of interest.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Electronic Supplementary Material

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1310-6 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1310-6. See the Electronic Supplementary Material for the change of device relaxation time with the number of pulses. The relaxation time increases as the number of stimulation pulses increases. The fabricated memristor is confirmed to have the feasibility of transitioning from STP (short-term plasticity, STP) to LTP. Supplementary material also demonstrates the PFM amplitude mapping and PV loop of HfAlO, and the effect of negative voltage pulses on conductance of the device. In addition, the LRS mechanism of the Pd/HfAlO/LSMO/STO/Si structure memristor is further studied in the supplementary material.

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (No. F2021201009), the National Natural Science Foundation of China (No. 62104058), the Natural Science Foundation of Hebei Province (No. F2021201022), the Science and Technology Project of Hebei Education Department (No. QN2020178), the Foundation of President of Hebei University (No. XZJJ201910), and Advanced Talents Incubation Program of the Hebei University (No. 521000981362).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5995 KB)

Accesses

Citations

Detail

Sections
Recommended

/