Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing

Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi

PDF(7257 KB)
PDF(7257 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63301. DOI: 10.1007/s11467-023-1308-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing

Author information +
History +

Abstract

Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO3(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.

Graphical abstract

Keywords

Ag/STO/Pt reconfigurable memristor / volatile and nonvolatile coexistence / neuron circuit / synaptic biomimicry / neuromorphic computing

Cite this article

Download citation ▾
Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301 https://doi.org/10.1007/s11467-023-1308-0

References

[1]
X.YanH.HeG.LiuZ.ZhaoY.PeiP.LiuJ.ZhaoZ.ZhouK.WangH.Yan, A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3−CeO2 films on silicon, Adv. Mater. 34(23), 2110343 (2022)
[2]
X. Zhang , Y. Zhuo , Q. Luo , Z. Wu , R. Midya , Z. Wang , W. Song , R. Wang , N. K. Upadhyay , Y. Fang , F. Kiani , M. Rao , Y. Yang , Q. Xia , Q. Liu , M. Liu , J. J. Yang . An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun., 2020, 11(1): 51
CrossRef ADS Google scholar
[3]
P.A. MerollaJ.V. ArthurR.Alvarez-IcazaA.S. CassidyJ.SawadaF.AkopyanB.L. JacksonN.ImamC.GuoY.NakamuraB.BrezzoI.VoS.K. EsserR.AppuswamyB.TabaA.AmirM.D. FlicknerW.P. RiskR.ManoharD.S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 (2014)
[4]
X. Yan , Y. Li , J. Zhao , Z. Zhou . Bistable capacitance performance-induced ambipolar charge injected based on Ba0.6Sr0.4TiO3 by an Inlaid Zr–Hf–O layer for novel nonvolatile memory application. IEEE Trans. Electron Dev., 2017, 64(2): 587
CrossRef ADS Google scholar
[5]
J.M. NageswaranN.DuttJ.L. KrichmarA.NicolauA.V. Veidenbaum, A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors, Neural Netw. 22(5–6), 791 (2009)
[6]
R. Guo , W. Lin , X. Yan , T. Venkatesan , J. Chen . Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev., 2020, 7(1): 011304
CrossRef ADS Google scholar
[7]
H. Ling , D. A. Koutsouras , S. Kazemzadeh , Y. Van De Burgt , F. Yan , P. Gkoupidenis . Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev., 2020, 7(1): 011307
CrossRef ADS Google scholar
[8]
Y. Zhang , Z. Wang , J. Zhu , Y. Yang , M. Rao , W. Song , Y. Zhuo , X. Zhang , M. Cui , L. Shen , R. Huang , J. Joshua Yang . Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev., 2020, 7(1): 011308
CrossRef ADS Google scholar
[9]
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef ADS Google scholar
[10]
H. T. Zhang , T. J. Park , A. Islam , D. S. J. Tran , S. Manna , Q. Wang , S. Mondal , H. Yu , S. Banik , S. Cheng , H. Zhou , S. Gamage , S. Mahapatra , Y. Zhu , Y. Abate , N. Jiang , S. Sankaranarayanan , A. Sengupta , C. Teuscher , S. Ramanathan . Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533
CrossRef ADS Google scholar
[11]
H. M. Huang , R. Yang , Z. H. Tan , H. K. He , W. Zhou , J. Xiong , X. Guo . Quasi‐hodgkin–huxley neurons with leaky integrate‐and‐fire functions physically realized with memristive devices. Adv. Mater., 2019, 31(3): 1803849
CrossRef ADS Google scholar
[12]
S. H. Sung , T. J. Kim , H. Shin , T. H. Im , K. J. Lee . Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun., 2022, 13: 2811
CrossRef ADS Google scholar
[13]
N. Ilyas , J. Wang , C. Li , H. Fu , D. Li , X. Jiang , D. Gu , Y. Jiang , W. Li . Controllable resistive switching of STO: Ag/SiO2-based memristor synapse for neuromorphic computing. J. Mater. Sci. Technol., 2022, 97: 254
CrossRef ADS Google scholar
[14]
T. Tuma , A. Pantazi , M. Le Gallo , A. Sebastian , E. Eleftheriou . Stochastic phase-change neurons. Nat. Nanotechnol., 2016, 11(8): 693
CrossRef ADS Google scholar
[15]
X. Yan , J. Zhao , S. Liu , Z. Zhou , Q. Liu , J. Chen , X. Y. Liu . Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater., 2018, 28(1): 1705320
CrossRef ADS Google scholar
[16]
X. Sun , G. Li , X. Zhang , L. Ding , W. Zhang . Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J. Phys. D Appl. Phys., 2011, 44(12): 125404
CrossRef ADS Google scholar
[17]
J. Ji , F. Ling , S. Zhou , D. Li , C. Luo , L. Wu , J. Yao . Optically tuned dielectric property of ferroelectric PZT/STO/PT superlattice by THz spectroscopy. J. Alloys Compd., 2017, 703: 517
CrossRef ADS Google scholar
[18]
H. Jong Choi , S. Won Park , G. Deok Han , J. Na , G. T. Kim , J. Hyung Shim . Resistive switching characteristics of polycrystalline SrTiO3 films. Appl. Phys. Lett., 2014, 104(24): 242105
CrossRef ADS Google scholar
[19]
X. Yan , J. Yin , Z. Liu , X. Xia . Studies on the reset power needed for the unipolar resistive switching in amorphous SrTiO3−δ films induced by electrical pulse. Phys. Lett. A, 2011, 375(41): 3599
CrossRef ADS Google scholar
[20]
P. Hou , Z. Gao , K. Ni . Multilevel data storage memory based on polycrystalline SrTiO3 ultrathin film. RSC Advances, 2017, 7(78): 49753
CrossRef ADS Google scholar
[21]
H. Hu , Y. Li , Y. Yang , W. Lv , H. Yu , W. Lu , Y. Dong , Z. Wen . Enhanced resistance switching in ultrathin Ag/SrTiO3/(La, Sr)MnO3 memristors and their long-term plasticity for neuromorphic computing. Appl. Phys. Lett., 2021, 119(2): 023502
CrossRef ADS Google scholar
[22]
J. Xiong , R. Yang , J. Shaibo , H. M. Huang , H. K. He , W. Zhou , X. Guo . Cooper, and Munro learning rules realized in second‐order memristors with tunable forgetting rate. Adv. Funct. Mater., 2019, 29(9): 1807316
CrossRef ADS Google scholar
[23]
M. A. Rahman , S. Walia , S. Naznee , M. Taha , S. Nirantar , F. Rahman , M. Bhaskaran , S. Sriram . Artificial somatosensors: Feedback receptors for electronic skins. Adv. Intell. Syst., 2020, 2(11): 2000094
CrossRef ADS Google scholar
[24]
H. Tang , X. G. Tang , Y. P. Jiang , Q. X. Liu , W. H. Li , L. Luo . Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the sol−gel process. J Asian Ceram Soc., 2019, 7(3): 298
CrossRef ADS Google scholar
[25]
K. Wang , Q. Hu , B. Gao , Q. Lin , F. W. Zhuge , D. Y. Zhang , L. Wang , Y. H. He , R. H. Scheicher , H. Tong , X. S. Miao . Threshold switching memristor-based stochastic neurons for probabilistic computing. Mater. Horiz., 2021, 8(2): 619
CrossRef ADS Google scholar
[26]
K.WangL.LiR.ZhaoJ.ZhaoZ.ZhouJ.WangH.WangB.TangC.LuJ.LouJ.ChenX.Yan, A pure 2H‐MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator, Adv. Electron. Mater. 6(3), 1901342 (2020)
[27]
G. Wang , X. Yan , J. Chen , D. Ren . Memristors based on the hybrid structure of oxide and boron nitride nanosheets combining memristive and neuromorphic functionalities. Phys. Status Solidi Rapid Res. Lett., 2020, 14(1): 1900539
CrossRef ADS Google scholar
[28]
F. Wu , S. Si , P. Cao , W. Wei , X. Zhao , T. Shi , X. Zhang , J. Ma , R. Cao , L. Liao , T. Y. Tseng , Q. Liu . Interface engineering via MoS2 insertion layer for improving resistive switching of conductive-bridging random access memory. Adv. Electron. Mater., 2019, 5(4): 1800747
CrossRef ADS Google scholar
[29]
L.A. LiuJ.ZhaoG.CaoS.ZhengX.Yan, A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Electron. Mater. 6, 2100373 (2021)
[30]
X. Mou , J. Tang , Y. Lyu , Q. Zhang , S. Yang , F. Xu , W. Liu , M. Xu , Y. Zhou , W. Sun , Y. Zhong , B. Gao , P. Yu , H. Qian , H. Wu . Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv., 2021, 7(29): eabh0648
CrossRef ADS Google scholar
[31]
Y. Zhang , W. He , Y. Wu , K. Huang , Y. Shen , J. Su , Y. Wang , Z. Zhang , X. Ji , G. Li , H. Zhang , S. Song , H. Li , L. Sun , R. Zhao , L. Shi . Highly compact artificial memristive neuron with low energy consumption. Small, 2018, 14(51): 1802188
CrossRef ADS Google scholar
[32]
Y. Zhang , Z. Fang , X. Yan . HfO2-based memristor-CMOS hybrid implementation of artificial neuron model. Appl. Phys. Lett., 2022, 120(21): 213502
CrossRef ADS Google scholar
[33]
L. Yan , Y. Pei , J. Wang , H. He , Y. Zhao , X. Li , Y. Wei , X. Yan . High-speed Si films based threshold switching device and its artificial neuron application. Appl. Phys. Lett., 2021, 119(15): 153507
CrossRef ADS Google scholar
[34]
Y. Wang , X. Chen , D. Shen , M. Zhang , X. Chen , X. Chen , W. Shao , H. Gu , J. Xu , E. Hu , L. Wang , R. Xu , Y. Tong . Artificial neurons based on Ag/V2C/W threshold switching memristors. Nanomaterials (Basel), 2021, 11(11): 2860
CrossRef ADS Google scholar
[35]
P.DayanL.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, 2005
[36]
R. Yang , H. M. Huang , Q. H. Hong , X. B. Yin , Z. H. Tan , T. Shi , Y. X. Zhou , X. S. Miao , X. P. Wang , S. B. Mi , C. L. Jia , X. Guo . Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater., 2018, 28(5): 1704455
CrossRef ADS Google scholar
[37]
Y. He , S. Nie , R. Liu , S. Jiang , Y. Shi , Q. Wan . Spatiotemporal information processing emulated by multiterminal neuro‐transistor networks. Adv. Mater., 2019, 31(21): 1900903
CrossRef ADS Google scholar
[38]
X. Zhang , W. Wang , Q. Liu , X. Zhao , J. Wei , R. Cao , Z. Yao , X. Zhu , F. Zhang , H. Lv . An artificial neuron based on a threshold switching memristor. IEEE Electr. Device L., 2017, 39(2): 308
CrossRef ADS Google scholar
[39]
G. Cao , X. Yan , J. Wang , Z. Zhou , J. Lou , K. Wang . Realization of fast switching speed and electronic synapse in Ta/TaOx/AlN/Pt bipolar resistive memory. AIP Adv., 2020, 10(5): 055312
CrossRef ADS Google scholar
[40]
X.YanK.WangJ.ZhaoZ.ZhouH.WangJ.WangL.ZhangX.LiZ.XiaoQ.ZhaoY.PeiG.WangC.QinH.LiJ.LouQ.LiuP.Zhou, A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio‐synapse, Small 15(25), 1900107 (2019)
[41]
Z. Zhao , A. Abdelsamie , R. Guo , S. Shi , J. Zhao , W. Lin , K. Sun , J. Wang , J. Wang , X. Yan , J. Chen . Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Res., 2022, 15(3): 2682
CrossRef ADS Google scholar
[42]
T.ShiR.WangZ.WuY.SunJ.AnQ.Liu, A review of resistive switching devices: Performance improvement, characterization, and applications, Small Struct. 2(4), 2000109 (2021)
[43]
Y.PeiZ.ZhouA.P. ChenJ.ChenX.Yan, A carbon-based memristor design for associative learning activities and neuromorphic computing, Nanoscale 12(25), 13531 (2020)
[44]
Y. F. Wang , Y. C. Lin , I. T. Wang , T. P. Lin , T. H. Hou . Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep., 2015, 5(1): 10150
CrossRef ADS Google scholar
[45]
Z. Zhao , X. Yan . Ferroelectric memristor based on Hf0.5Zr0.5O2 thin film combining memristive and neuromorphic functionalities. Phys. Status Solidi Rapid Res. Lett., 2020, 14(9): 2000224
CrossRef ADS Google scholar
[46]
Z.ZhuY.PeiC.GaoH.WangX.Yan, A Cu/HZO/GeS/Pt memristor for neuroinspired computing, Phys. Status Solidi Rapid Res. Lett. 15(10), 2100072 (2021)
[47]
S. Ke , L. Jiang , Y. Zhao , Y. Xiao , B. Jiang , G. Cheng , F. Wu , G. Cao , Z. Peng , M. Zhu , C. Ye . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
CrossRef ADS Google scholar

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1308-0 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1308-0.

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018AAA0103300), the National Key R&D Plan “Nano Frontier” Key Special Project (Grant No. 2021YFA1200502), the Cultivation Projects of National Major R&D Project (Grant No. 92164109), the National Natural Science Foundation of China (Grant Nos. 61874158, 62004056, and 62104058), the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (Grant No. XDB44000000-7), Hebei Basic Research Special Key Project (Grant No. F2021201045), the Support Program for the Top Young Talents of Hebei Province (Grant No. 70280011807), the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (Grant No. SLRC2019018), the Interdisciplinary Research Program of Natural Science of Hebei University (No. DXK202101), Institute of Life Sciences and Green Development (No. 521100311), the Natural Science Foundation of Hebei Province (Nos. F2022201054 and F2021201022), the Outstanding Young Scientific Research and Innovation team of Hebei University (Grant No. 605020521001), Special Support Funds for National High Level Talents (Grant No. 041500120001), High-level Talent Research Startup Project of Hebei University (Grant No. 521000981426), the Science and Technology Project of Hebei Education Department (Grant Nos. QN2020178 and QN2021026), and Baoding Science and Technology Plan Project (Nos. 2172P011 and 2272P014).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7257 KB)

Accesses

Citations

Detail

Sections
Recommended

/