Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing
Xiaobing Yan, Xu Han, Ziliang Fang, Zhen Zhao, Zixuan Zhang, Jiameng Sun, Yiduo Shao, Yinxing Zhang, Lulu Wang, Shiqing Sun, Zhenqiang Guo, Xiaotong Jia, Yupeng Zhang, Zhiyuan Guan, Tuo Shi
Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing
Neuromorphic computing aims to achieve artificial intelligence by mimicking the mechanisms of biological neurons and synapses that make up the human brain. However, the possibility of using one reconfigurable memristor as both artificial neuron and synapse still requires intensive research in detail. In this work, Ag/SrTiO3(STO)/Pt memristor with low operating voltage is manufactured and reconfigurable as both neuron and synapse for neuromorphic computing chip. By modulating the compliance current, two types of resistance switching, volatile and nonvolatile, can be obtained in amorphous STO thin film. This is attributed to the manipulation of the Ag conductive filament. Furthermore, through regulating electrical pulses and designing bionic circuits, the neuronal functions of leaky integrate and fire, as well as synaptic biomimicry with spike-timing-dependent plasticity and paired-pulse facilitation neural regulation, are successfully realized. This study shows that the reconfigurable devices based on STO thin film are promising for the application of neuromorphic computing systems.
Ag/STO/Pt reconfigurable memristor / volatile and nonvolatile coexistence / neuron circuit / synaptic biomimicry / neuromorphic computing
[1] |
X.YanH.HeG.LiuZ.ZhaoY.PeiP.LiuJ.ZhaoZ.ZhouK.WangH.Yan, A robust memristor based on epitaxial vertically aligned nanostructured BaTiO3−CeO2 films on silicon, Adv. Mater. 34(23), 2110343 (2022)
|
[2] |
X. Zhang , Y. Zhuo , Q. Luo , Z. Wu , R. Midya , Z. Wang , W. Song , R. Wang , N. K. Upadhyay , Y. Fang , F. Kiani , M. Rao , Y. Yang , Q. Xia , Q. Liu , M. Liu , J. J. Yang . An artificial spiking afferent nerve based on Mott memristors for neurorobotics. Nat. Commun., 2020, 11(1): 51
CrossRef
ADS
Google scholar
|
[3] |
P.A. MerollaJ.V. ArthurR.Alvarez-IcazaA.S. CassidyJ.SawadaF.AkopyanB.L. JacksonN.ImamC.GuoY.NakamuraB.BrezzoI.VoS.K. EsserR.AppuswamyB.TabaA.AmirM.D. FlicknerW.P. RiskR.ManoharD.S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 (2014)
|
[4] |
X. Yan , Y. Li , J. Zhao , Z. Zhou . Bistable capacitance performance-induced ambipolar charge injected based on Ba0.6Sr0.4TiO3 by an Inlaid Zr–Hf–O layer for novel nonvolatile memory application. IEEE Trans. Electron Dev., 2017, 64(2): 587
CrossRef
ADS
Google scholar
|
[5] |
J.M. NageswaranN.DuttJ.L. KrichmarA.NicolauA.V. Veidenbaum, A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors, Neural Netw. 22(5–6), 791 (2009)
|
[6] |
R. Guo , W. Lin , X. Yan , T. Venkatesan , J. Chen . Ferroic tunnel junctions and their application in neuromorphic networks. Appl. Phys. Rev., 2020, 7(1): 011304
CrossRef
ADS
Google scholar
|
[7] |
H. Ling , D. A. Koutsouras , S. Kazemzadeh , Y. Van De Burgt , F. Yan , P. Gkoupidenis . Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev., 2020, 7(1): 011307
CrossRef
ADS
Google scholar
|
[8] |
Y. Zhang , Z. Wang , J. Zhu , Y. Yang , M. Rao , W. Song , Y. Zhuo , X. Zhang , M. Cui , L. Shen , R. Huang , J. Joshua Yang . Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Appl. Phys. Rev., 2020, 7(1): 011308
CrossRef
ADS
Google scholar
|
[9] |
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef
ADS
Google scholar
|
[10] |
H. T. Zhang , T. J. Park , A. Islam , D. S. J. Tran , S. Manna , Q. Wang , S. Mondal , H. Yu , S. Banik , S. Cheng , H. Zhou , S. Gamage , S. Mahapatra , Y. Zhu , Y. Abate , N. Jiang , S. Sankaranarayanan , A. Sengupta , C. Teuscher , S. Ramanathan . Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533
CrossRef
ADS
Google scholar
|
[11] |
H. M. Huang , R. Yang , Z. H. Tan , H. K. He , W. Zhou , J. Xiong , X. Guo . Quasi‐hodgkin–huxley neurons with leaky integrate‐and‐fire functions physically realized with memristive devices. Adv. Mater., 2019, 31(3): 1803849
CrossRef
ADS
Google scholar
|
[12] |
S. H. Sung , T. J. Kim , H. Shin , T. H. Im , K. J. Lee . Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun., 2022, 13: 2811
CrossRef
ADS
Google scholar
|
[13] |
N. Ilyas , J. Wang , C. Li , H. Fu , D. Li , X. Jiang , D. Gu , Y. Jiang , W. Li . Controllable resistive switching of STO: Ag/SiO2-based memristor synapse for neuromorphic computing. J. Mater. Sci. Technol., 2022, 97: 254
CrossRef
ADS
Google scholar
|
[14] |
T. Tuma , A. Pantazi , M. Le Gallo , A. Sebastian , E. Eleftheriou . Stochastic phase-change neurons. Nat. Nanotechnol., 2016, 11(8): 693
CrossRef
ADS
Google scholar
|
[15] |
X. Yan , J. Zhao , S. Liu , Z. Zhou , Q. Liu , J. Chen , X. Y. Liu . Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroinspired computing. Adv. Funct. Mater., 2018, 28(1): 1705320
CrossRef
ADS
Google scholar
|
[16] |
X. Sun , G. Li , X. Zhang , L. Ding , W. Zhang . Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells. J. Phys. D Appl. Phys., 2011, 44(12): 125404
CrossRef
ADS
Google scholar
|
[17] |
J. Ji , F. Ling , S. Zhou , D. Li , C. Luo , L. Wu , J. Yao . Optically tuned dielectric property of ferroelectric PZT/STO/PT superlattice by THz spectroscopy. J. Alloys Compd., 2017, 703: 517
CrossRef
ADS
Google scholar
|
[18] |
H. Jong Choi , S. Won Park , G. Deok Han , J. Na , G. T. Kim , J. Hyung Shim . Resistive switching characteristics of polycrystalline SrTiO3 films. Appl. Phys. Lett., 2014, 104(24): 242105
CrossRef
ADS
Google scholar
|
[19] |
X. Yan , J. Yin , Z. Liu , X. Xia . Studies on the reset power needed for the unipolar resistive switching in amorphous SrTiO3−δ films induced by electrical pulse. Phys. Lett. A, 2011, 375(41): 3599
CrossRef
ADS
Google scholar
|
[20] |
P. Hou , Z. Gao , K. Ni . Multilevel data storage memory based on polycrystalline SrTiO3 ultrathin film. RSC Advances, 2017, 7(78): 49753
CrossRef
ADS
Google scholar
|
[21] |
H. Hu , Y. Li , Y. Yang , W. Lv , H. Yu , W. Lu , Y. Dong , Z. Wen . Enhanced resistance switching in ultrathin Ag/SrTiO3/(La, Sr)MnO3 memristors and their long-term plasticity for neuromorphic computing. Appl. Phys. Lett., 2021, 119(2): 023502
CrossRef
ADS
Google scholar
|
[22] |
J. Xiong , R. Yang , J. Shaibo , H. M. Huang , H. K. He , W. Zhou , X. Guo . Cooper, and Munro learning rules realized in second‐order memristors with tunable forgetting rate. Adv. Funct. Mater., 2019, 29(9): 1807316
CrossRef
ADS
Google scholar
|
[23] |
M. A. Rahman , S. Walia , S. Naznee , M. Taha , S. Nirantar , F. Rahman , M. Bhaskaran , S. Sriram . Artificial somatosensors: Feedback receptors for electronic skins. Adv. Intell. Syst., 2020, 2(11): 2000094
CrossRef
ADS
Google scholar
|
[24] |
H. Tang , X. G. Tang , Y. P. Jiang , Q. X. Liu , W. H. Li , L. Luo . Bipolar resistive switching characteristics of amorphous SrTiO3 thin films prepared by the sol−gel process. J Asian Ceram Soc., 2019, 7(3): 298
CrossRef
ADS
Google scholar
|
[25] |
K. Wang , Q. Hu , B. Gao , Q. Lin , F. W. Zhuge , D. Y. Zhang , L. Wang , Y. H. He , R. H. Scheicher , H. Tong , X. S. Miao . Threshold switching memristor-based stochastic neurons for probabilistic computing. Mater. Horiz., 2021, 8(2): 619
CrossRef
ADS
Google scholar
|
[26] |
K.WangL.LiR.ZhaoJ.ZhaoZ.ZhouJ.WangH.WangB.TangC.LuJ.LouJ.ChenX.Yan, A pure 2H‐MoS2 nanosheet-based memristor with low power consumption and linear multilevel storage for artificial synapse emulator, Adv. Electron. Mater. 6(3), 1901342 (2020)
|
[27] |
G. Wang , X. Yan , J. Chen , D. Ren . Memristors based on the hybrid structure of oxide and boron nitride nanosheets combining memristive and neuromorphic functionalities. Phys. Status Solidi Rapid Res. Lett., 2020, 14(1): 1900539
CrossRef
ADS
Google scholar
|
[28] |
F. Wu , S. Si , P. Cao , W. Wei , X. Zhao , T. Shi , X. Zhang , J. Ma , R. Cao , L. Liao , T. Y. Tseng , Q. Liu . Interface engineering via MoS2 insertion layer for improving resistive switching of conductive-bridging random access memory. Adv. Electron. Mater., 2019, 5(4): 1800747
CrossRef
ADS
Google scholar
|
[29] |
L.A. LiuJ.ZhaoG.CaoS.ZhengX.Yan, A memristor-based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Electron. Mater. 6, 2100373 (2021)
|
[30] |
X. Mou , J. Tang , Y. Lyu , Q. Zhang , S. Yang , F. Xu , W. Liu , M. Xu , Y. Zhou , W. Sun , Y. Zhong , B. Gao , P. Yu , H. Qian , H. Wu . Analog memristive synapse based on topotactic phase transition for high-performance neuromorphic computing and neural network pruning. Sci. Adv., 2021, 7(29): eabh0648
CrossRef
ADS
Google scholar
|
[31] |
Y. Zhang , W. He , Y. Wu , K. Huang , Y. Shen , J. Su , Y. Wang , Z. Zhang , X. Ji , G. Li , H. Zhang , S. Song , H. Li , L. Sun , R. Zhao , L. Shi . Highly compact artificial memristive neuron with low energy consumption. Small, 2018, 14(51): 1802188
CrossRef
ADS
Google scholar
|
[32] |
Y. Zhang , Z. Fang , X. Yan . HfO2-based memristor-CMOS hybrid implementation of artificial neuron model. Appl. Phys. Lett., 2022, 120(21): 213502
CrossRef
ADS
Google scholar
|
[33] |
L. Yan , Y. Pei , J. Wang , H. He , Y. Zhao , X. Li , Y. Wei , X. Yan . High-speed Si films based threshold switching device and its artificial neuron application. Appl. Phys. Lett., 2021, 119(15): 153507
CrossRef
ADS
Google scholar
|
[34] |
Y. Wang , X. Chen , D. Shen , M. Zhang , X. Chen , X. Chen , W. Shao , H. Gu , J. Xu , E. Hu , L. Wang , R. Xu , Y. Tong . Artificial neurons based on Ag/V2C/W threshold switching memristors. Nanomaterials (Basel), 2021, 11(11): 2860
CrossRef
ADS
Google scholar
|
[35] |
P.DayanL.F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT Press, 2005
|
[36] |
R. Yang , H. M. Huang , Q. H. Hong , X. B. Yin , Z. H. Tan , T. Shi , Y. X. Zhou , X. S. Miao , X. P. Wang , S. B. Mi , C. L. Jia , X. Guo . Synaptic suppression triplet-STDP learning rule realized in second-order memristors. Adv. Funct. Mater., 2018, 28(5): 1704455
CrossRef
ADS
Google scholar
|
[37] |
Y. He , S. Nie , R. Liu , S. Jiang , Y. Shi , Q. Wan . Spatiotemporal information processing emulated by multiterminal neuro‐transistor networks. Adv. Mater., 2019, 31(21): 1900903
CrossRef
ADS
Google scholar
|
[38] |
X. Zhang , W. Wang , Q. Liu , X. Zhao , J. Wei , R. Cao , Z. Yao , X. Zhu , F. Zhang , H. Lv . An artificial neuron based on a threshold switching memristor. IEEE Electr. Device L., 2017, 39(2): 308
CrossRef
ADS
Google scholar
|
[39] |
G. Cao , X. Yan , J. Wang , Z. Zhou , J. Lou , K. Wang . Realization of fast switching speed and electronic synapse in Ta/TaOx/AlN/Pt bipolar resistive memory. AIP Adv., 2020, 10(5): 055312
CrossRef
ADS
Google scholar
|
[40] |
X.YanK.WangJ.ZhaoZ.ZhouH.WangJ.WangL.ZhangX.LiZ.XiaoQ.ZhaoY.PeiG.WangC.QinH.LiJ.LouQ.LiuP.Zhou, A new memristor with 2D Ti3C2Tx MXene flakes as an artificial bio‐synapse, Small 15(25), 1900107 (2019)
|
[41] |
Z. Zhao , A. Abdelsamie , R. Guo , S. Shi , J. Zhao , W. Lin , K. Sun , J. Wang , J. Wang , X. Yan , J. Chen . Flexible artificial synapse based on single-crystalline BiFeO3 thin film. Nano Res., 2022, 15(3): 2682
CrossRef
ADS
Google scholar
|
[42] |
T.ShiR.WangZ.WuY.SunJ.AnQ.Liu, A review of resistive switching devices: Performance improvement, characterization, and applications, Small Struct. 2(4), 2000109 (2021)
|
[43] |
Y.PeiZ.ZhouA.P. ChenJ.ChenX.Yan, A carbon-based memristor design for associative learning activities and neuromorphic computing, Nanoscale 12(25), 13531 (2020)
|
[44] |
Y. F. Wang , Y. C. Lin , I. T. Wang , T. P. Lin , T. H. Hou . Characterization and modeling of nonfilamentary Ta/TaOx/TiO2/Ti analog synaptic device. Sci. Rep., 2015, 5(1): 10150
CrossRef
ADS
Google scholar
|
[45] |
Z. Zhao , X. Yan . Ferroelectric memristor based on Hf0.5Zr0.5O2 thin film combining memristive and neuromorphic functionalities. Phys. Status Solidi Rapid Res. Lett., 2020, 14(9): 2000224
CrossRef
ADS
Google scholar
|
[46] |
Z.ZhuY.PeiC.GaoH.WangX.Yan, A Cu/HZO/GeS/Pt memristor for neuroinspired computing, Phys. Status Solidi Rapid Res. Lett. 15(10), 2100072 (2021)
|
[47] |
S. Ke , L. Jiang , Y. Zhao , Y. Xiao , B. Jiang , G. Cheng , F. Wu , G. Cao , Z. Peng , M. Zhu , C. Ye . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |