Flat band localization due to self-localized orbital

Zhen Ma, Wei-Jin Chen, Yuntian Chen, Jin-Hua Gao, X. C. Xie

PDF(4496 KB)
PDF(4496 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63302. DOI: 10.1007/s11467-023-1306-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Flat band localization due to self-localized orbital

Author information +
History +

Abstract

We discover a new wave localization mechanism in a periodic wave system, which can produce a novel type of flat band and is distinct from the known localization mechanisms, i.e., Anderson localization and flat band lattices. The first example we give is a designed electron waveguide (EWG) on 2DEG with special periodic confinement potential. Numerical calculations show that, with proper confinement geometry, electrons can be completely localized in an open waveguide. We interpret this flat band localization (FBL) phenomenon by introducing the concept of self-localized orbitals. Essentially, each unit cell of the waveguide is equivalent to an artificial atom, where the self-localized orbital is a special eigenstate with unique spatial distribution. These self-localized orbitals form the flat bands in the waveguide. Such self-localized orbital induced FBL is a general phenomenon of wave motion, which can arise in any wave systems with carefully engineered boundary conditions. We then design a metallic waveguide (MWG) array to illustrate that similar FBL can be readily realized and observed with electromagnetic waves.

Graphical abstract

Keywords

flat band localization / self-localized orbital / electron waveguide

Cite this article

Download citation ▾
Zhen Ma, Wei-Jin Chen, Yuntian Chen, Jin-Hua Gao, X. C. Xie. Flat band localization due to self-localized orbital. Front. Phys., 2023, 18(6): 63302 https://doi.org/10.1007/s11467-023-1306-2

References

[1]
P. W. Anderson . Absence of diffusion in certain random lattices. Phys. Rev., 1958, 109(5): 1492
CrossRef ADS Google scholar
[2]
A. Lagendijk , B. V. Tiggelen , D. S. Wiersma . Fifty years of Anderson localization. Phys. Today, 2009, 62(8): 24
CrossRef ADS Google scholar
[3]
B. Sutherland . Localization of electronic wave functions due to local topology. Phys. Rev. B, 1986, 34(8): 5208
CrossRef ADS Google scholar
[4]
E. H. Lieb . Two theorems on the Hubbard model. Phys. Rev. Lett., 1989, 62(10): 1201
CrossRef ADS Google scholar
[5]
A. Mielke . Ferromagnetic ground states for the Hubbard model on line graphs. J. Phys. Math. Gen., 1991, 24(2): L73
CrossRef ADS Google scholar
[6]
H. Tasaki . Ferromagnetism in the Hubbard models with degenerate single-electron ground states. Phys. Rev. Lett., 1992, 69(10): 1608
CrossRef ADS Google scholar
[7]
D. Leykam , A. Andreanov , S. Flach . Artificial flat band systems: from lattice models to experiments. Adv. Phys. X, 2018, 3(1): 1473052
CrossRef ADS Google scholar
[8]
W. X. Qiu , S. Li , J. H. Gao , Y. Zhou , F. C. Zhang . Designing an artificial Lieb lattice on a metal surface. Phys. Rev. B, 2016, 94(24): 241409
CrossRef ADS Google scholar
[9]
L. Ma , W. X. Qiu , J. T. Lü , J. H. Gao . Orbital degrees of freedom in artificial electron lattices on a metal surface. Phys. Rev. B, 2019, 99(20): 205403
CrossRef ADS Google scholar
[10]
M. R. Slot , T. S. Gardenier , P. H. Jacobse , G. C. P. van Miert , S. N. Kempkes , S. J. M. Zevenhuizen , C. M. Smith , D. Vanmaekelbergh , I. Swart . Experimental realization and characterization of an electronic Lieb lattice. Nat. Phys., 2017, 13(7): 672
CrossRef ADS Google scholar
[11]
R. Drost , T. Ojanen , A. Harju , P. Liljeroth . Topological states in engineered atomic lattices. Nat. Phys., 2017, 13(7): 668
CrossRef ADS Google scholar
[12]
R. Shen , L. B. Shao , B. Wang , D. Y. Xing . Single Dirac cone with a flat band touching on line-centered-square optical lattices. Phys. Rev. B, 2010, 81(4): 041410
CrossRef ADS Google scholar
[13]
V. Apaja , M. Hyrkäs , M. Manninen , Flat bands . Dirac cones, and atom dynamics in an optical lattice. Phys. Rev. A, 2010, 82(4): 041402
CrossRef ADS Google scholar
[14]
S. Taie , H. Ozawa , T. Ichinose , T. Nishio , S. Nakajima , Y. Takahashi . Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 2015, 1(10): e1500854
CrossRef ADS Google scholar
[15]
H. Ozawa , S. Taie , T. Ichinose , Y. Takahashi . Interaction-driven shift and distortion of a flat band in an optical Lieb lattice. Phys. Rev. Lett., 2017, 118(17): 175301
CrossRef ADS Google scholar
[16]
D. Guzmán-Silva , C. Mejía-Cortés , M. A. Bandres , M. C. Rechtsman , S. Weimann , S. Nolte , M. Segev , A. Szameit , R. A. Vicencio . Experimental observation of bulk and edge transport in photonic Lieb lattices. New J. Phys., 2014, 16(6): 063061
CrossRef ADS Google scholar
[17]
S. Mukherjee , A. Spracklen , D. Choudhury , N. Goldman , P. Öhberg , E. Andersson , R. R. Thomson . Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett., 2015, 114(24): 245504
CrossRef ADS Google scholar
[18]
R. A. Vicencio , C. Cantillano , L. Morales-Inostroza , B. Real , C. Mejía-Cortés , S. Weimann , A. Szameit , M. I. Molina . Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett., 2015, 114(24): 245503
CrossRef ADS Google scholar
[19]
Z. H. Yang , Y. P. Wang , Z. Y. Xue , W. L. Yang , Y. Hu , J. H. Gao , Y. Wu . Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice. Phys. Rev. A, 2016, 93(6): 062319
CrossRef ADS Google scholar
[20]
L. L. Wan , X. Y. Lü , J. H. Gao , Y. Wu . Controllable photon and phonon localization in optomechanical Lieb lattices. Opt. Express, 2017, 25(15): 17364
CrossRef ADS Google scholar
[21]
B. Pal , K. Saha . Flat bands in fractal-like geometry. Phys. Rev. B, 2018, 97(19): 195101
CrossRef ADS Google scholar
[22]
X. C. Xie , S. Das Sarma . “Extended” electronic states in a Fibonacci superlattice. Phys. Rev. Lett., 1988, 60(15): 1585
CrossRef ADS Google scholar
[23]
Z. Chen , X. Liu , J. Zeng . Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 2022, 17(4): 42508
CrossRef ADS Google scholar
[24]
J. Zeng , M. Lu , H. Liu , H. Jiang , X. Xie . Realistic flat-band model based on degenerate p-orbitals in two-dimensional ionic materials. Sci. Bull. (Beijing), 2021, 66(8): 765
CrossRef ADS Google scholar
[25]
C. Wu , D. Bergman , L. Balents , S. Das Sarma . Flat bands and Wigner crystallization in the honeycomb optical lattice. Phys. Rev. Lett., 2007, 99(7): 070401
CrossRef ADS Google scholar
[26]
S. Miyahara , S. Kusuta , N. Furukawa . BCS theory on a flat band lattice. Physica C, 2007, 460−462: 1145
CrossRef ADS Google scholar
[27]
Z. Ma , S. Li , M. M. Xiao , Y. W. Zheng , M. Lu , H. Liu , J. H. Gao , X. C. Xie . Moiré flat bands of twisted few-layer graphite. Front. Phys., 2023, 18(1): 13307
CrossRef ADS Google scholar
[28]
E. Tang , J. W. Mei , X. G. Wen . High-temperature fractional quantum Hall states. Phys. Rev. Lett., 2011, 106(23): 236802
CrossRef ADS Google scholar
[29]
K. Sun , Z. Gu , H. Katsura , S. Das Sarma . Nearly flatbands with nontrivial topology. Phys. Rev. Lett., 2011, 106(23): 236803
CrossRef ADS Google scholar
[30]
T. Neupert , L. Santos , C. Chamon , C. Mudry . Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett., 2011, 106(23): 236804
CrossRef ADS Google scholar
[31]
W. Maimaiti , A. Andreanov , H. C. Park , O. Gendelman , S. Flach . Compact localized states and flat-band generators in one dimension. Phys. Rev. B, 2017, 95(11): 115135
CrossRef ADS Google scholar
[32]
M. Röntgen , C. V. Morfonios , P. Schmelcher . Compact localized states and flat bands from local symmetry partitioning. Phys. Rev. B, 2018, 97(3): 035161
CrossRef ADS Google scholar
[33]
R. A. Vicencio , C. Mejía-Cortés . Diffraction-free image transmission in kagome photonic lattices. J. Opt., 2014, 16(1): 015706
CrossRef ADS Google scholar
[34]
S. Xia , Y. Hu , D. Song , Y. Zong , L. Tang , Z. Chen . Demonstration of flat-band image transmission in optically induced Lieb photonic lattices. Opt. Lett., 2016, 41(7): 1435
CrossRef ADS Google scholar
[35]
T. Baba . Slow light in photonic crystals. Nat. Photonics, 2008, 2(8): 465
CrossRef ADS Google scholar
[36]
C. W. Hsu , B. Zhen , A. D. Stone , J. D. Joannopoulos , M. Soljăcíc . Bound states in the continuum. Nat. Rev. Mater., 2016, 1(9): 16048
CrossRef ADS Google scholar
[37]
See Supplemental Material I for the calculations about the EWGs.
[38]
See Supplemental Material II for the Fermi level in EWG.
[39]
See Supplemental Material III for the wave functions in the bump.
[40]
W. X. Qiu , L. Ma , J. T. Lü , J. H. Gao . Making an artificial px,y -orbital honeycomb electron lattice on a metal surface. Phys. Rev. B, 2021, 104(23): 235404
CrossRef ADS Google scholar
[41]
M. R. Slot , S. N. Kempkes , E. J. Knol , W. M. J. van Weerdenburg , J. J. van den Broeke , D. Wegner , D. Vanmaekelbergh , A. A. Khajetoorians , C. Morais Smith , I. Swart . p-band engineering in artificial electronic lattices. Phys. Rev. X, 2019, 9(1): 011009
CrossRef ADS Google scholar
[42]
See Supplemental Material IV for other artificial orbitals in EWG.
[43]
See Supplemental Material VII for this self-localized orbits.
[44]
C. Danieli , A. Maluckov , S. Flach . Compact discrete breathers on flat-band networks. Low Temp. Phys., 2018, 44: 678
CrossRef ADS Google scholar

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1306-2 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1306-2.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11874160, 12141401, and 11534001), the National Key Research and Development Program of China (No. 2017YFA0403501), and the Fundamental Research Funds for the Central Universities (HUST: 2017KFYXJJ027).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4496 KB)

Accesses

Citations

Detail

Sections
Recommended

/