Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding
Fang Li, Jun Fu, Mingzhu Xue, You Li, Hualing Zeng, Erjun Kan, Ting Hu, Yi Wan
Room-temperature vertical ferroelectricity in rhenium diselenide induced by interlayer sliding
One variety of ferroelectricity that results from lateral relative movements between the adjacent atomic layers is referred to as sliding ferroelectricity, which generates an interfacial charge transfer and hence a polarization reversal. The mechanism of sliding ferroelectricity existent in van der Waals crystals is quite distinct from the conventional ferroelectric switching mechanisms mediated by ion displacement. It creates new possibilities for the design of two-dimensional (2D) ferroelectrics since it can be achieved even in non-polar systems. Before 2D ferroelectrics can be widely employed for practical implementations, however, there is still significant work to be done on several fronts, such as exploring ferroelectricity possibly in more potential 2D systems. Here, we report the experimental observation of room-temperature robust vertical ferroelectricity in layered semiconducting rhenium diselenide (ReSe2), a representative member of the transition metal dichalcogenides material family, based on a combined research of nanoscale piezoresponse and second harmonic generation measurements. While no such ferroelectric behavior was seen in 1L ReSe2, 2L ReSe2 exhibits vertical ferroelectricity at ambient environment. Based on density-functional theory calculations, we deduce that the microscopic origin of ferroelectricity for ReSe2 is uncompensated vertical charge transfer that is dependent on in-plane translation and switchable upon interlayer sliding. Our findings have important ramifications for the ongoing development of sliding ferroelectricity since the semiconducting properties and low switching barrier of ReSe2 open up the fascinating potential for functional nanoelectronics applications.
rhenium diselenide / transition metal dichalcogenides / vertical ferroelectricity / sliding ferroelectricity
[1] |
L. W. Martin , A. M. Rappe . Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
CrossRef
ADS
Google scholar
|
[2] |
M.Wu, 100 years of ferroelectricity, Nat. Rev. Phys. 3, 726 (2021)
|
[3] |
Z. Guan , H. Hu , X. Shen , P. Xiang , N. Zhong , J. Chu , C. Duan . Recent progress in two‐dimensional ferroelectric materials. Adv. Electron. Mater., 2020, 6(1): 1900818
CrossRef
ADS
Google scholar
|
[4] |
C. Wang , L. You , D. Cobden , J. Wang . Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., 2023, 22(5): 542
CrossRef
ADS
Google scholar
|
[5] |
F. Liu , L. You , K. L. Seyler , X. Li , P. Yu , J. Lin , X. Wang , J. Zhou , H. Wang , H. He , S. T. Pantelides , W. Zhou , P. Sharma , X. Xu , P. M. Ajayan , J. Wang , Z. Liu . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7(1): 12357
CrossRef
ADS
Google scholar
|
[6] |
Y. Li , J. Fu , X. Mao , C. Chen , H. Liu , M. Gong , H. Zeng . Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
CrossRef
ADS
Google scholar
|
[7] |
S. Zhou , L. You , H. Zhou , Y. Pu , Z. Gui , J. Wang . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
CrossRef
ADS
Google scholar
|
[8] |
C. Cui , W. J. Hu , X. Yan , C. Addiego , W. Gao , Y. Wang , Z. Wang , L. Li , Y. Cheng , P. Li , X. Zhang , H. N. Alshareef , T. Wu , W. Zhu , X. Pan , L. J. Li . Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett., 2018, 18(2): 1253
CrossRef
ADS
Google scholar
|
[9] |
S. Wan , Y. Li , W. Li , X. Mao , C. Wang , C. Chen , J. Dong , A. Nie , J. Xiang , Z. Liu , W. Zhu , H. Zeng . Nonvolatile ferroelectric memory effect in ultrathin α‐In2Se3. Adv. Funct. Mater., 2019, 29(20): 1808606
CrossRef
ADS
Google scholar
|
[10] |
Y.CaiJ.YangF.WangS.LiY.WangX.ZhanF.WangR.ChengZ.WangJ.He, Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors, Front. Phys. 18(3), 33308 (2023)
|
[11] |
L. Li , M. Wu . Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
CrossRef
ADS
Google scholar
|
[12] |
M. Wu , J. Li . Sliding ferroelectricity in 2D van der Waals materials: Related physics and future opportunities. Proc. Natl. Acad. Sci. USA, 2021, 118(50): e2115703118
CrossRef
ADS
Google scholar
|
[13] |
Z. Fei , W. Zhao , T. A. Palomaki , B. Sun , M. K. Miller , Z. Zhao , J. Yan , X. Xu , D. H. Cobden . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560(7718): 336
CrossRef
ADS
Google scholar
|
[14] |
Q. Yang , M. Wu , J. Li . Origin of two-dimensional vertical ferroelectricity in WTe2 bilayer and multilayer. J. Phys. Chem. Lett., 2018, 9(24): 7160
CrossRef
ADS
Google scholar
|
[15] |
P.SharmaF.X. XiangD.F. ShaoD.ZhangE.Y. TsymbalA.R. HamiltonJ.Seidel, A room-temperature ferroelectric semimetal, Sci. Adv. 5(7), eaax5080 (2019)
|
[16] |
K. Yasuda , X. Wang , K. Watanabe , T. Taniguchi , P. Jarillo-Herrero . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372(6549): 1458
CrossRef
ADS
Google scholar
|
[17] |
M. V. Stern , Y. Waschitz , W. Cao , I. Nevo , K. Watanabe , T. Taniguchi , E. Sela , M. Urbakh , O. Hod , M. B. Shalom . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549): 1462
CrossRef
ADS
Google scholar
|
[18] |
C. R. Woods , P. Ares , H. Nevison-Andrews , M. J. Holwill , R. Fabregas , F. Guinea , A. K. Geim , K. S. Novoselov , N. R. Walet , L. Fumagalli . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12(1): 347
CrossRef
ADS
Google scholar
|
[19] |
Y. Wang , S. Jiang , J. Xiao , X. Cai , D. Zhang , P. Wang , G. Ma , Y. Han , J. Huang , K. Watanabe , T. Taniguchi , Y. Guo , L. Wang , A. S. Mayorov , G. Yu . Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys., 2022, 17(4): 43504
CrossRef
ADS
Google scholar
|
[20] |
H. Hu , H. Wang , Y. Sun , J. Li , J. Wei , D. Xie , H. Zhu . Out-of-plane and in-plane ferroelectricity of atom-thick two-dimensional InSe. Nanotechnology, 2021, 32(38): 385202
CrossRef
ADS
Google scholar
|
[21] |
F. Sui , M. Jin , Y. Zhang , R. Qi , Y. N. Wu , R. Huang , F. Yue , J. Chu . Sliding ferroelectricity in van der Waals layered γ-InSe semiconductor. Nat. Commun., 2023, 14(1): 36
CrossRef
ADS
Google scholar
|
[22] |
L. Rogée , L. Wang , Y. Zhang , S. Cai , P. Wang , M. Chhowalla , W. Ji , S. P. Lau . Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376(6596): 973
CrossRef
ADS
Google scholar
|
[23] |
Y. Wan , T. Hu , X. Mao , J. Fu , K. Yuan , Y. Song , X. Gan , X. Xu , M. Xue , X. Cheng , C. Huang , J. Yang , L. Dai , H. Zeng , E. Kan . Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys. Rev. Lett., 2022, 128(6): 067601
CrossRef
ADS
Google scholar
|
[24] |
L. P. Miao , N. Ding , N. Wang , C. Shi , H. Y. Ye , L. Li , Y. F. Yao , S. Dong , Y. Zhang . Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater., 2022, 21(10): 1158
CrossRef
ADS
Google scholar
|
[25] |
B. Jariwala , D. Voiry , A. Jindal , B. A. Chalke , R. Bapat , A. Thamizhavel , M. Chhowalla , M. Deshmukh , A. Bhattacharya . Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater., 2016, 28(10): 3352
CrossRef
ADS
Google scholar
|
[26] |
J.RanL.ChenD.WangA.Talebian-KiakalaiehY.JiaoM.Adel HamzaY.QuL.JingK.DaveyS.Z. Qiao, Atomic‐level regulated two‐dimensional ReSe2: A universal platform boosting photocatalysis, Adv. Mater. 2023, 2210164 (2023)
|
[27] |
L. Xing , X. Yan , J. Zheng , G. Xu , Z. Lu , L. Liu , J. Wang , P. Wang , X. Pan , L. Jiao . Highly crystalline ReSe2 atomic layers synthesized by chemical vapor transport. InfoMat, 2019, 1(4): 552
CrossRef
ADS
Google scholar
|
[28] |
A. S. Rosyadi , A. H. Y. Chan , J. X. Li , C. H. Liu , C. H. Ho . Formation of van der Waals stacked p−n homojunction optoelectronic device of multilayered ReSe2 by Cr doping. Adv. Opt. Mater., 2022, 10(13): 2200392
CrossRef
ADS
Google scholar
|
[29] |
M. Hafeez , L. Gan , H. Li , Y. Ma , T. Zhai . Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater., 2016, 28(37): 8296
CrossRef
ADS
Google scholar
|
[30] |
P. Blake , E. W. Hill , A. H. Castro Neto , K. S. Novoselov , D. Jiang , R. Yang , T. J. Booth , A. K. Geim . Making graphene visible. Appl. Phys. Lett., 2007, 91(6): 063124
CrossRef
ADS
Google scholar
|
[31] |
H. Li , G. Lu , Z. Yin , Q. He , H. Li , Q. Zhang , H. Zhang . Optical identification of single‐and few‐layer MoS2 sheets. Small, 2012, 8(5): 682
CrossRef
ADS
Google scholar
|
[32] |
Y. Y. Wang , J. D. Zhou , J. Jiang , T. T. Yin , Z. X. Yin , Z. Liu , Z. X. Shen . In-plane optical anisotropy in ReS2 flakes determined by angle-resolved polarized optical contrast spectroscopy. Nanoscale, 2019, 11(42): 20199
CrossRef
ADS
Google scholar
|
[33] |
G.KresseJ.Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
|
[34] |
G. Kresse , J. Furthmüller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef
ADS
Google scholar
|
[35] |
G. Kresse , D. Joubert . From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 1999, 59(3): 1758
CrossRef
ADS
Google scholar
|
[36] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |